EndoAnchors, a bailout option or an everyday tool?

Prof. dr. Jean-Paul P.M. de Vries

Head Department of Surgery University Medical Centre Groningen, The Netherlands

j.p.p.m.de.vries@umcg.nl

24th Critical Issues Congress, Paris, Dec 17-18th 2021

ADVISORY BOARD MEMBER: MEDTRONIC

CONSULTANT: GETINGE, BENTLEY

CO-FOUNDER: ENDOVASCULAR DIAGNOSTICS

RESEARCH GRANTS: GORE, JSF FOUNDATION, FOUNDATION L & L.

KEY FACTORS THAT PUT AN EVAR PATIENT AT RISK FOR SUBOPTIMAL OUTCOMES MULTIPLE FACTORS = INCREASED RISK

HOSTILE NECKS

Increased risk of developing Type la endoleak at 1 year $(P = 0.01)^1$

9x

Increased risk of aneurysm-related mortality at 1 year $(P = 0.01)^1$

¹Antoniou GA, et al. J Vasc Surg. 2013;57:527-538 ²Kouvelos GN, et al. J Cardiovasc Surg. 2019;60(2):167-174 ³Oberhuber et al. J Vasc Surg. 2012;55(4):929-934 ⁴Schanzer A, et al. J Vasc Surg. 2015;61:16-22 ⁵Morris et al. Am Surg. 2017;83(8):339-341

WIDE NECKS

Meta-analysis² of neck diameters \geq 25, \geq 28, & \geq 30mm

More likely to have Type la endoleak $(P = 0.001)^2$

More likely to have sac expansion $(P = 0.009)^2$

ADDITIONAL CONSIDERATIONS

LONG LIFE EXPECTANCY AAA is a progressive dilating disease even after EVAR or open surgical repair³

AT RISK FOR NOT HAVING FOLLOW UP 22% of EVAR patients were lost to imaging f/u at 1yr⁴ Independent risk factors for not following up Urgent or emergent cases⁴ Multiple comorbidities⁴ Older patients⁴

- Travel time to hospital⁵

SURGICAL STRENGTH, ENDOVASCULAR APPROACH

Radial support just as with sutures⁴

96.3% implants with adventitial penetration^{1†}

Stronger attachment over EVAR alone² via secure transmural wall fixation³

Image courtesy of Dr. K. Oikonomou

*Multiple endograft types were tested

- ¹ Site Reported, ANCHOR Registry Primary AAA Arm, October 2020 data cut. Medtronic data on file.
- ² Melas N, et al. J Vasc Surg. 2012;55:1726-1733
- ³ Schlosser et al. Eur J Vasc Surg. 2017;53:458-459
- ⁴ Foteh. EVToday. 2016. June:16-22
- † ANCHOR 4-yr Primary AAA Arm, at intended location

Graft fixation strength with EndoAnchor[™] implants exceeds inherent aortic integrity of cadaver²

Video courtesy of Dr. David Deaton

HELI-FX TM

- Replicates SH-1 tip
- Transmural Penetration

Secure attachment

LONG-TERM RESULTS

5-Year Safety and Efficacy Evidence by Core Lab

STAPLE-I Trial

Safety & Feasibility; 2006-2007

21 pts across 5 US sites

Endoleak	1-Yr	2-Yr	3-Yr	4-Yr	5-Yr
Type 1a	0%	0%	0%	0%	0%

No AAA ruptures

STAPLE-II Trial

Safety & Efficacy; 2007-2009

155 pts across 33 US sites

Endoleak	1-Yı	r 2	2-Yr		3-Yr
Type 1a	0%		0%		0%
	1	AAA	Sac	Dy	vnam
100%			8	30%	
80%	60%	72%		•	70
60%	•				
40%					
20%	_			_	
0% —	1.Vr	2-Vr		-Vr	
	Enlo	argement	St	able	Reg

No AAA ruptures

ANCHOR REGISTRY

Registry Design	Prospective & Observational International & Multi-Center Dual-arm Registry with Core Lab Analysis
Registry Principal Investigators	Europe: Dr Jean-Paul de Vries University Medical Centre, Groningen, The Neth US: Dr William Jordan Emory University School of Medicine, Atlanta, G
Treatment Arms	"Primary"
	"Revision"
Enrollment & Duration	Enrollment began 2012 and patients will be followed for
Follow-up	Per Standard of Care at each center & discretion of Inv

> 1000 Patients Enrolled

nerlands

Georgia

r 5 years

restigator

ANCHOR REGISTRY STRUCTURE

Therapeutic Use cohort consists of patients receiving EndoAnchorTM implants to treat Type 1a Endoleaks in the Primary and Revision Arms.

PATIENTS AT RISK FOR SUBOPTIMAL OUTCOMES MAY BENEFIT FROM ESAR ANCHOR REGISTRY REVISION AAA ARM: 5-YEAR RESULTS

ANCHOR REVISION ARM 5 - YEAR RESULTS

Hostile Necks: 86.1%

<15mm, >28mm, >60°, Conical, Ca²⁺/Thrombus >50%

ANCHOR REVISION ARM 5 - YEAR RESULTS

Hostile Necks: 86.1%

<15mm, >28mm, >60°, Conical, Ca²⁺/Thrombus >50%

ANCHOR REVISION AAA ARM 4-YEAR RESULTS SAC DYNAMICS

AAA Maximum Diameter Sac Dynamics Outcomes 8-9 years after Index EVAR

These sac dynamic data highlight the challenges of treating failed EVAR pts

"For those at high risk of disease progression, this revision cohort demonstrates the clinical value of treating these patients optimal at index instead of waiting for the EVAR to fail"

65.4% of sacs stable or decreasing at 5years

ANCHOR PRIMARY AAA ARM 5-YEAR RESULTS (N=771)¹ HOSTILE NECKS: 88.7% (572/645)

5-Yr Freedom from Rupture 97.7%

ojects at risk:		
337	250	124
3 years	4 years	5 years
Initial Proces	duro	

ANCHOR PRIMARY AAA ARM 5-YEAR RESULTS (N=771)¹ TYPE IA ENDOLEAKS

Type la Endoleaks at 1 year: 2.5% (14/568) 2 year: 1.7% (6/346) 3 year: 2.9% (7/238) 4 year: 3.2% (5/154) 5 year: 4.8% (4/84)

5-Yr Freedom from Secondary Procedures 96.0% to Treat Type la Endoleaks

No migration

1. Data first presented by Dr William Jordan at Charing Cross Symposium 2021 Site Reported, ANCHOR Registry Primary AAA Arm, October 2020 data cut. Medtronic data on file

249

124

5 years

ANCHOR PRIMARY AAA ARM 5-YEAR RESULTS (N=771)¹ SAC DYNAMICS

Aneurysm Diameter Increase

Aneurysm Diameter Stable

Aneurysm Diameter Decrease

1. Data first presented by Dr William Jordan at Charing Cross Symposium 2021

Site Reported, ANCHOR Registry Primary AAA Arm, October 2020 data cut. Medtronic data on file

BENEFITS OF TRANSMURAL RADIAL FIXATION IN PROXIMAL SEAL ESAR PROVIDES SIGNIFICANTLY GREATER SAC REGRESSION THAN EVAR ALONE

ANCHOR data shows **ESAR** (EndoSuture Aneurysm Repair) can significantly increase regression rates

¹Muhs BE, et al. J Vasc Surg. 2018;67:1699-1707

GREATER SAC REGRESSION, GREATER SURVIVAL EVIDENCE LINKS SAC REGRESSION TO HIGHER RATE OF LONG-TERM SURVIVAL

14,817* total subjects in VQI

treated with EVAR between 2003–2017¹

Sac regression is linked to increased rate of long-term survival

*Total number of patients with 1-year imaging ¹O'Donnell TFX et al. JVS 2018

Survival rate at **10 yrs:** Regressing: 78% Stable: 69% Expanding: 61%

WHEN ENDOANCHORS WILL NOT SOLVE A TYPE IA ENDOLEAKS

- Endograft mis-deployment
- Insufficient apposition due to undersizing of stent graft
- Gaps >2 mm
- Excessive (circular) thrombus/calcium in seal zone
- Excessive oversizing creating gutters
- If extension of seal is necessary

CONCLUSION, PROPHYLACTIC USE

ESAR AT THE INDEX PROCEDURE:

Attaches adventitia to the graft

Minimizes Type la endoleaks⁴

Promotes greater sac regression⁵

No migration

5 YEAR CLINICAL OUTCOMES⁴

98.4% Freedom from Aneurysm-Related mortality

97.7% Freedom from Rupture

96.0% Freedom from Secondary Procedures to Treat Type Ia endoleaks

¹ Melas, et al., J Vasc Surg 2012;55:1726-33 ² Schlosser et al. Eur J Vasc Surg. 2017;53:458-459 ³ Tassiopoulos AK, et al. J Vasc Surg. 2017;66:45-52 ⁴ Site Reported, ANCHOR Registry Primary AAA Arm, October 2020 data cut. Medtronic data on file
⁵ Muhs BE, et al. J Vasc Surg. 2018;67:1699-1707

CONCLUSION, THERAPEUTIC USE

- Use of EndoAnchors in the revision setting can be successful in treating type Ia endoleaks if done for the right indications and technically correctly
- 5 years results from ANCHOR revision cohort demonstrate good results when treating failed EVARs:
 - Low percentage of aneurysm-related mortality, with •
 - Relatively low need for 2nd procedures to treat type Ia's ullet
 - However, the index procedure should be optimal, strive for at least 1 cm of circumferential apposition. If not with EVAR, perform other technique (FEVAR, open surgery)

ESAR adds strength to seal

FEVAR Open surgery

INADEQUATE

