

# Does the STABILISE and Petticoat techniques increase the risk of SCI?

Luís Mendes Pedro, MD, PhD, FEBVS <sup>1</sup>
Alice Lopes, MD, FEBVS <sup>1</sup>
João Leitão, MD <sup>2</sup>
Carlos Mendonça, MD <sup>2</sup>
Tiago Magalhães, MD <sup>1</sup>

<sup>1</sup> Vascular Surgery Department

<sup>&</sup>lt;sup>2</sup> Imagiology Department













## **DISCLOSURES**

Speaker / Consulting / Proctoring fees:

GORE® / ARTIVION® / CORDIS® / COOK®.











#### PETTICOAT CONCEPT

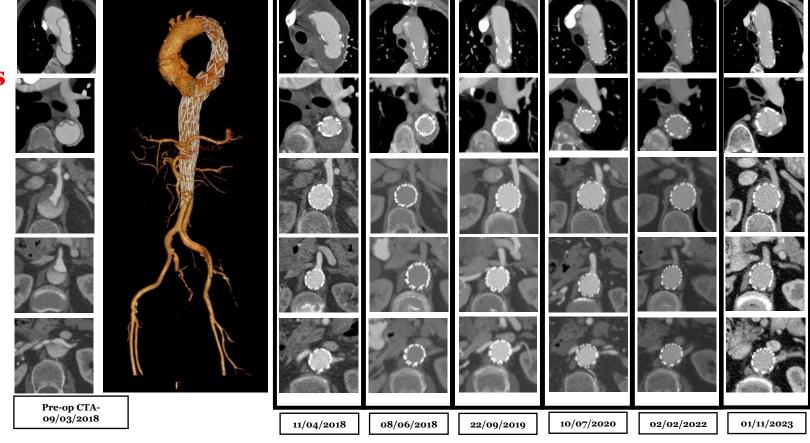


SCI not a significant issue due to the maintenance of FL perfusion.





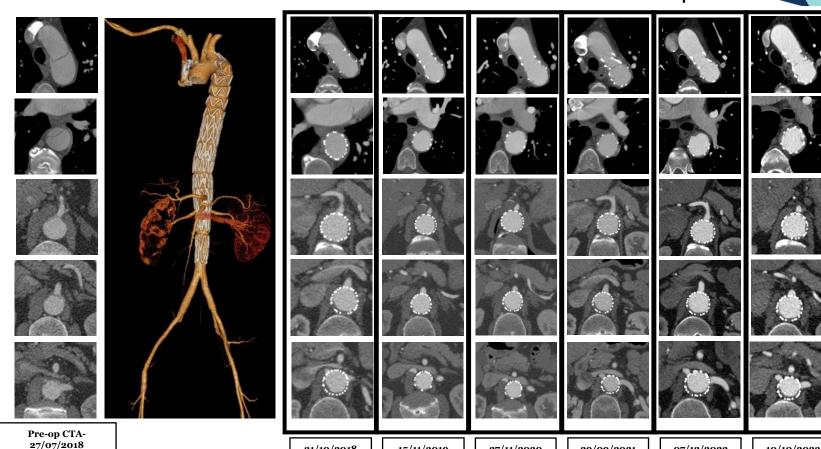







#### ANOTHER DISCLOSURE: I believe in the STABILISE technique

**ACP** 


6 years



## ANOTHER DISCLOSURE: I believe in the STABILISE technique

**JMC** 

**5.5** years

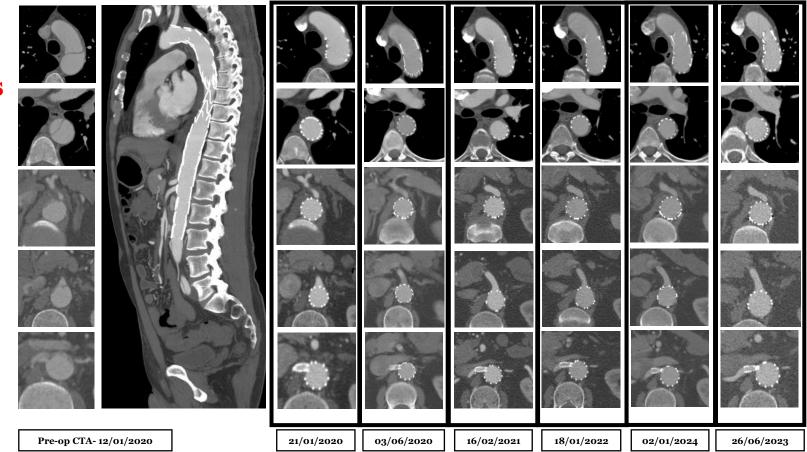


15/11/2019

27/11/2020

29/09/2021

07/12/2022


10/10/2023

31/10/2018

# ANOTHER DISCLOSURE: I believe in the STABILISE technique

**YB** 

4 years



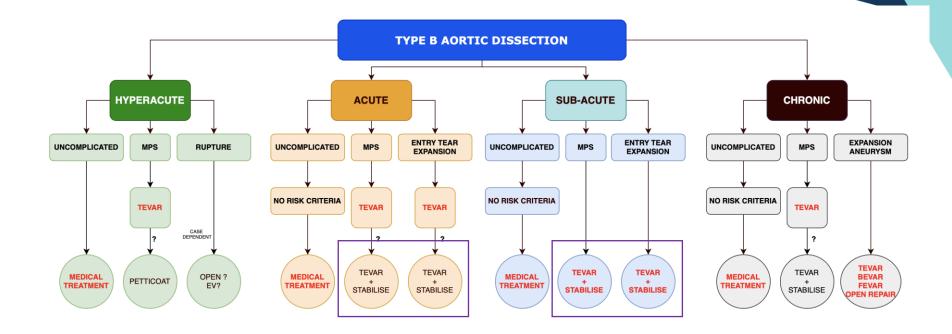
# STABILISE TECHNIQUE





- Symptomatic TBAD (MPS).
- Sub-acute phase (preferentially).

- Adequate proximal landing zone (debranching?).
- Descending / thoracoabdominal aortic diameter <42 mm.</li>
- No or limited dissection into aortic branches.
- No CTD.










SANTA MARIA













# STABILISE TECHNIQUE: unknown issues

- Mid-term and long-term outcomes?
- Prevents unfavourable remodelling?

Spinal cord ischemia?

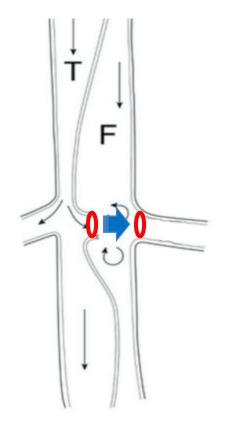


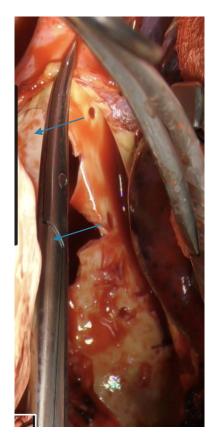






| Author, year      |           | Cases | SCI (n) | sci (%) |                                          |
|-------------------|-----------|-------|---------|---------|------------------------------------------|
| Hofferberth, 2014 |           | 11    | 0       | 0       |                                          |
| Melissano, 2018   |           | 10    | 1       | 10      | temporary paraparesis                    |
| Faure, 2018       | CTD       | 41    | 2       | 4.9     | 1 temporary paraparesis;<br>1 paraplegia |
| Faure, 2018       | Marfan    | 7     | 0       | 0       |                                          |
| Faure, 2018       | Type I AD | 16    | 0       | 0       |                                          |
| Melissano, 2019   |           | 35    | 2       | 5.7     | temporary paraparesis                    |
| Faure, 2020       | Chronic   | 17    | 0       | 0       |                                          |
| OVERALL           |           | 137   | 5       | 3.6     |                                          |














#### **QUESTION:**

What is the impact of the STABILISE technique (bare stent dilatation) on the spinal arteries patency?











#### The fate of spinal arteries after the stent-assisted ballooninduced intimal disruption and relamination in aortic dissection repair technique: A case series

Alice Lopes, MD,<sup>a,b,c</sup> Ryan Gouveia e Melo, MD,<sup>a,b,c</sup> João Leitão, MD,<sup>b,d</sup> Carlos Mendonça, MD,<sup>d</sup> Mariana Moutinho, MD,<sup>a</sup> and Luís Mendes Pedro, MD, PhD, FEBVS,<sup>a,b,c</sup> *Lisbon, Portugal* 

#### **ABSTRACT**

**Objective:** We evaluated the patency of the spinal arteries (intercostal and lumbar) after the STABILISE (stent-assisted balloon-induced intimal disruption and relamination in aortic dissection repair) technique.

Methods: A retrospective analysis of all patients with aortic dissection treated with the STABILISE technique between April 2018 and July 2021 was performed. Imaging analysis of the spinal cord vascular supply was accomplished using multiplanar and maximum intensity projection reconstructed images of pre- and postoperative computed tomography angiograms at 1 month, 12 months, and annually thereafter.

**Results:** Twelve patients were treated for complicated aortic dissection. Primary technical success was 100% and midterm clinical success, at a mean follow-up of 27  $\pm$  12 months, was 90%. No cases of spinal cord ischemia were identified. One patient died after 1 year (non–aortic related), and one patient was lost to follow-up. A significant decrease was found in the mean number of patent spinal arteries in the stent graft area at 1 month (P < .001), 1 year (P < .001), and 2 years (P = .004). However, no significant reduction was found in the number of spinal arteries in either the bare metal stented or nonstented aorta (P > .05).

Conclusions: Use of the STABILISE technique decreased intercostal artery patency in the thoracic stent graft area, but spinal artery patency was not significantly affected by the bare metal stent nor its aggressive ballooning. These findings constitute a step toward a better understanding of the safety of this technique. (J Vasc Surg Cases Innov Tech 2023;9:101183.)

Keywords: Aortic dissection; Bare metal stent; Endovascular repair; Spinal cord ischemia; STABILISE; Stent graft

#### **SMALL PILOT COHORT STUDY**

- Assessment of intercostal and lumbar arteries patency in pre- and postoperative CTA.
- Imaging analysis of spinal cord vascular supply performed by the same experienced Radiologist.
- 64 slice Philips Extended Brilliance CT equipment; slice thickness of Imm.
- MPR images, MIP images and 3-D reconstructed images of pre- and postoperative CTA.









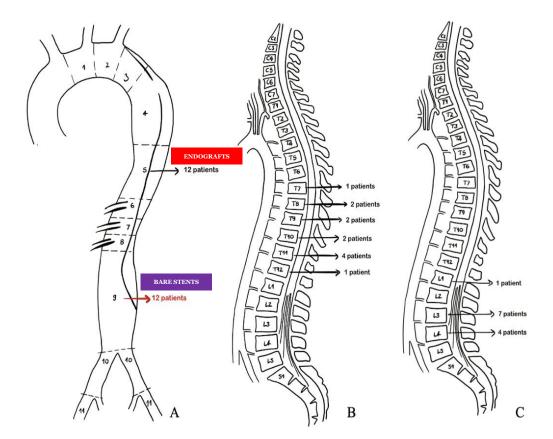


#### **STABILISE TECHNIQUE**

| N  | Sex | Age | Temporal phase Time since diagnosis (days)  |                                                 | Indication for STABILISE                     |  |  |
|----|-----|-----|---------------------------------------------|-------------------------------------------------|----------------------------------------------|--|--|
| 1  | M   | 71  | sub-acute                                   | 26                                              | visceral malperfusion                        |  |  |
| 2  | M   | 69  | chronic                                     | 144                                             | lower limb ischaemia                         |  |  |
| 3  | M   | 42  | chronic                                     | 98                                              | acute aortic dilatation                      |  |  |
| 4  | M   | 34  | acute                                       | 6                                               | renal malperfusion; lower limb ischemia      |  |  |
| 5  | M   | 59  | sub-acute                                   | sub-acute 16 lower limb ischaemia; refractory h |                                              |  |  |
| 6  | M   | 49  | acute                                       | 5                                               | visceral malperfusion                        |  |  |
| 7  | M   | 53  | acute                                       | 10                                              | visceral malperfusion                        |  |  |
| 8  | M   | 74  | sub-acute                                   | 22                                              | acute aortic dilatation                      |  |  |
| 9  | M   | 53  | acute 7 acute aortic dilatation; lower limb |                                                 | acute aortic dilatation; lower limb ischemia |  |  |
| 10 | M   | 52  | sub-acute                                   | 16                                              | renal malperfusion; lower limb ischemia      |  |  |
| 11 | M   | 61  | sub-acute                                   | 32                                              | lower limb ischaemia                         |  |  |
| 12 | F   | 68  | sub-acute                                   | 25                                              | lower limb ischaemia                         |  |  |

| Procedure                | No. (%)        |
|--------------------------|----------------|
| Hybrid TAAD repair       | 1 (8.3%)       |
| Left carotid-subclavian  | bypass 6 (50%) |
| Visceral artery stenting |                |
| SMA                      | 1 (8.3%)       |
| RRA                      | 5 (41.7%)      |
| LRA                      | 1 (8.3%)       |
| Iliac stenting           | 3 (25%)        |
| CERAB                    | 1 (8.3%)       |
|                          |                |





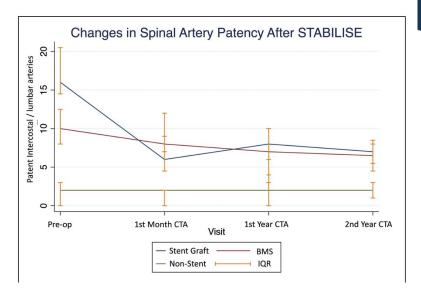







#### WHERE DID THE ENDOGRAFTS AND THE BARE STENTS LANDED?










#### **RESULTS**

- No spinal cord ischemia.
- No mortality.



**Table IV.** Evolution of spinal arteries on computed tomography angiography (CTA)

|                      |          | Postoperative |                |        |                |         |                |
|----------------------|----------|---------------|----------------|--------|----------------|---------|----------------|
| Area                 | Baseline | 1 Month       | <i>P</i> value | 1 Year | <i>P</i> value | 2 Years | <i>P</i> value |
| Covered endograft    | 15 (6)   | 6 (4.5)       | <.001          | 8 (7)  | <.001          | 7 (3.5) | .004           |
| BMS                  | 10 (4.5) | 8 (5)         | .24            | 7 (4)  | .44            | 6.5 (3) | .47            |
| Nonstented           | 2 (3)    | 2 (2)         | .62            | 2 (4)  | .79            | 2 (2)   | .89            |
| PMS Para motal stant |          |               |                |        |                |         |                |

BMS, Bare metal stent.

Data presented as median (interquartile range).

SPIRIT: Study on the Patency of spinal aRteries after the STABILISE Technique

- Multicentric (Lisbon, Milan).
- Waiting for the Lombardia Ethical Committee approval (already approved in Portugal).
- Target: 40-50 patients.
- Open to other centres.

alicerclopes@gmail.com luis.pedro@chln.min-saude.pt











## **REMARKS**

- The rate of SCI seems to be low with the STABILISE technique, but the available evidence is limited.
- In this small exploratory study, there was no significant reduction of intercostal and lumbar arteries patency in the bare-stent area after the STABILISE technique.
- Larger studies are needed to evaluate the risk of SCI and a possible role of a staged approach (TEVAR / bare-stent) in selected cases.







