What can we learn from imaging target vessels after complex EVAR?

Jean-Paul P.M. de Vries, R.C.L. Schuurmann, I.F.J. Tielliu

Department of Vascular Surgery University Medical Centre Groningen, The Netherlands j.p.p.m.de.vries@umcg.nl

Critical Issues 2024 Copenhagen/Malmö

ADVISORY BOARD MEMBER: MEDTRONIC, NAMSA

CONSULTANT: GETINGE, BIOMACS

CO-FOUNDER: ENDOVASCULAR DIAGNOSTICS

RESEARCH GRANTS: GORE, JSF FOUNDATION, FOUNDATION L & L, PERIMED, **GETINGE**.

Bridging Stents in Fenestrated and Branched Endovascular Aneurysm Repair: A Systematic REVIEW

Ann Vasc Surg 2021; 73: 454–462

Luca Mezzetto,¹ Lorenzo Scorsone,¹ Roberto Silingardi,² Stefano Gennai,² Gabriele Piffaretti,³ Alessandro Mantovani,⁴ Ruth L. Bush,⁵ Stephan Haulon,⁶ and Gian Franco Veraldi,¹ Modena, Italy, Houston, Texas, and France

Results: 19 studies were included with 2,796 patients and 9556 TV: 4,797 renal arteries (50.2%), 4,174 visceral arteries (43.6%), and undefined TV (n = 585; 6.1%) were bridged. Balloon-expandable stent-grafts (B-EXP) were used in 40.9% and self-expandable (S-EXP) in 22.7% and undefined stents in 36.3%. The included studies had quality assessment scores ranging between 11/15 and 15/15, with high grade of accordance on reporting general results, but a low grade of accordance on reporting detailed data. Despite study heterogeneity, high-volume analysis confirmed a higher rate of complication in renal arteries than visceral arteries, 6% (95% Cl 4–8) vs. 2% (95% Cl 1–3), respectively. The rate of reinterventions was similar, 3% (95% Cl 2–4) and 2% (95% Cl 1–3). S-EXP versus B-EXP stent complication was 4% (95% Cl 2–7) vs. 3% (95% Cl 2–5), respectively.

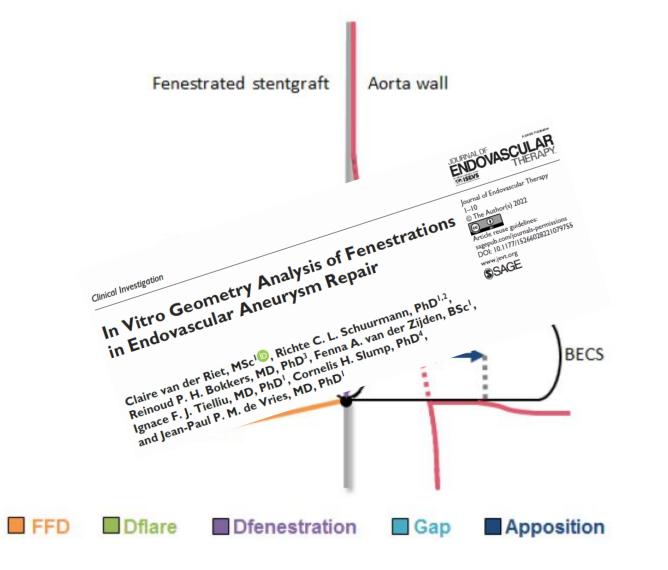
Bridging Stents in Fenestrated and Branched Endovascular Aneurysm Repair: A Systematic REVIEW

Ann Vasc Surg 2021; 73: 454-462

Luca Mezzetto,¹ Lorenzo Scorsone,¹ Roberto Silingardi,² Stefano Gennai,² Gabriele Piffaretti,³ Alessandro Mantovani,⁴ Ruth L. Bush,⁵ Stephan Haulon,⁶ and Gian Franco Veraldi,¹ Modena, Italy, Houston, Texas, and France

Conclusions: This systematic review underlines the low grade of accordance in reporting detailed data of bridging stents in F/B-EVAR. Renal TVs were more prone to complications, with an equivalent reintervention rate to visceral TVs. As to B-EVAR, the choice of B-EXP over S-EXP is still uncertain.

Bridging Stents in Fenestrated and Branched Endovascular Aneurysm Repair: A Systematic REVIEW


Ann Vasc Surg 2021; 73: 454-462

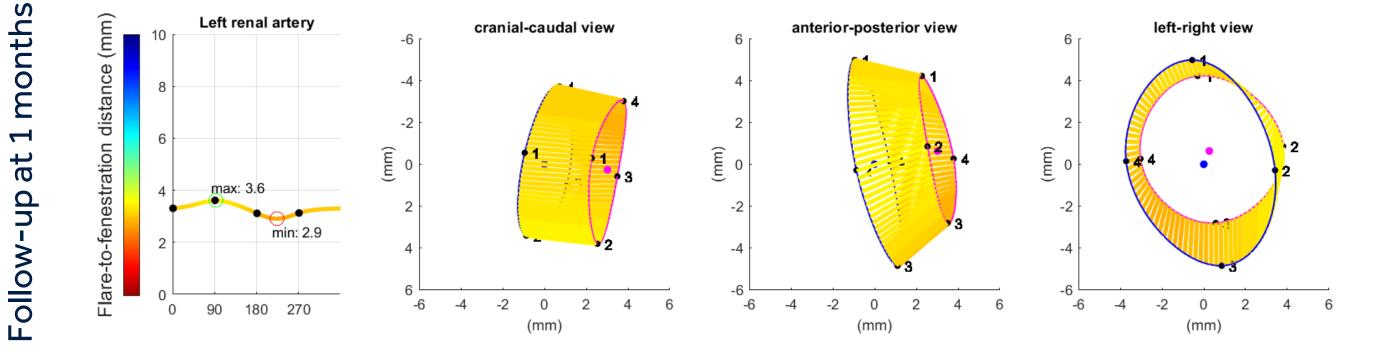
Luca Mezzetto,¹ Lorenzo Scorsone,¹ Roberto Silingardi,² Stefano Gennai,² Gabriele Piffaretti,³ Alessandro Mantovani,⁴ Ruth L. Bush,⁵ Stephan Haulon,⁶ and Gian Franco Veraldi,¹ Modena, Italy, Houston, Texas, and France

Conclusions: This systematic review underlines the low grade of accordance in reporting detailed data of bridging stents in F/B-EVAR. Benal TVs were more prone to complications, with an equivalent reintervention rate to visceral TVs. As to B-EVAR, the choice of B-EXP over S-EXP is still uncertain.

Mixture of BECS used Mixture of causes for reintervention No detailed determination of BECS geometry/ integrity

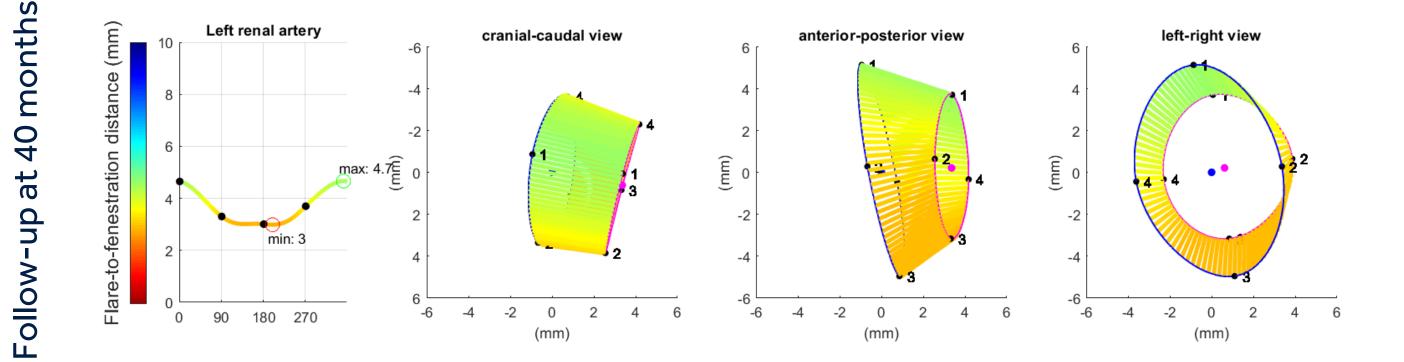
3D geometric analysis of the entire Advanta V12 bridging stentgraft

Three-Dimensional Geometric Analysis of Balloon-Expandable Covered Stents Improves Classification of Complications after Fenestrated Endovascular Aneurysm Repair

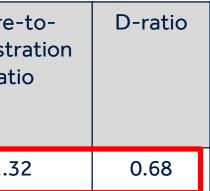

Claire van der Riet ^{1,*}, Richte C. L. Schuurmann ^{1,2}, Eric L. G. Verhoeven ³, Athanasios Katsargyris ³, Ignace F. J. Tielliu ¹, Timothy Resch ⁴, Reinoud P. H. Bokkers ⁵, and Jean-Paul P. M. de Vries ¹

J. Clin. Med. 2022, 11, 5716. https://doi.org/10.3390/jcm11195716

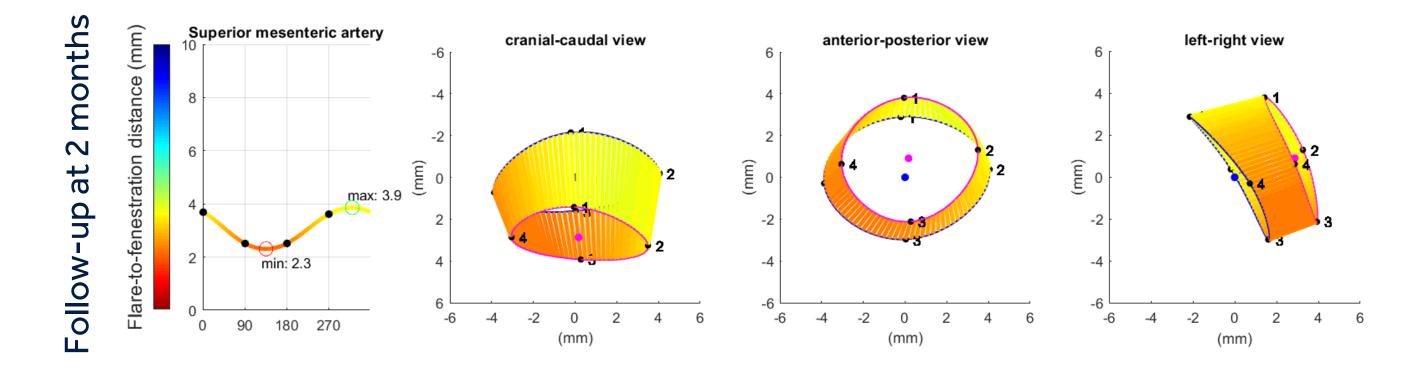
■279 FEVAR patients (2012 – 2017) \rightarrow 683 Advanta V12 BECS


- ■Median imaging follow-up 21 (1 45) months
- ■649 (95%) uncomplicated

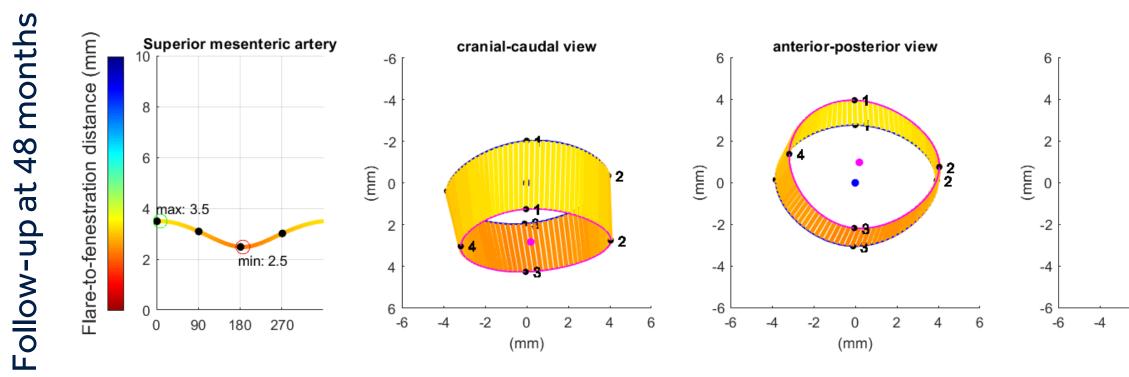
Uncomplicated Advanta V12 left renal artery (1/649)



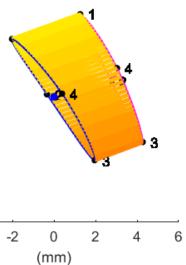
Flare Geometry Analysis	Min Diameter Fenestration	Max Diameter Fenestration	Min Dflare	Max Dflare	Gap	BECS apposition	Flare-to- fenestration ratio	D- ratio
mm	6.9	7.2	7.2	10.2	1.0	29.4	1.24	0.71


Uncomplicated Advanta V12 left renal artery (1/649)

Flare Geometry Analysis	Min Diameter Fenestration	Max Diameter Fenestration	Min Dflare	Max Dflare	Gap	BECS apposition	Flare fenestr rati
mm	6.3	6.9	7.1	10.5	1.0	28.2	1.3



Uncomplicated Advanta V12 in the SMA (1/649)


Flare Geometry Analysis	Min Diameter Fenestration	Max Diameter Fenestration	Min Dflare	Max Dflare	Gap	BECS apposition	Flare-to- fenestration ratio	D-ratio
mm	6.3	6.6	6.8	8.0	0.0	16.2	1.2	0.87


Uncomplicated Advanta V12 in the SMA (1/649)

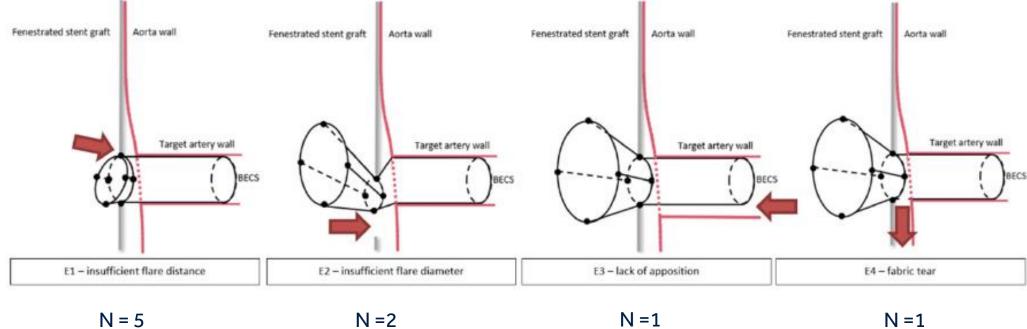
Flare Geometry Analysis	Min Diameter Fenestration	Max Diameter Fenestration	Min Dflare	Max Dflare	Gap	BECS apposition	Flare-to- fenestration ratio	
mm	6.7	7.3	6.9	7.8	0.0	17.1	1.1	

Three-Dimensional Geometric Analysis of Balloon-Expandable Covered Stents Improves Classification of Complications after Fenestrated Endovascular Aneurysm Repair

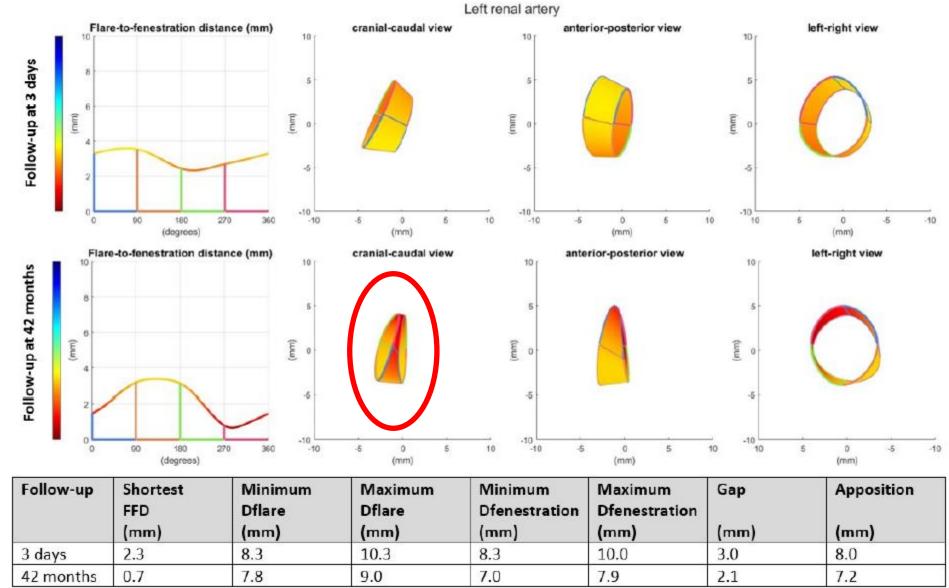
Claire van der Riet ^{1,*}, Richte C. L. Schuurmann ^{1,2}, Eric L. G. Verhoeven ³, Athanasios Katsargyris ³, Ignace F. J. Tielliu ¹, Timothy Resch ⁴, Reinoud P. H. Bokkers ⁵, and Jean-Paul P. M. de Vries ¹

J. Clin. Med. 2022, 11, 5716. https://doi.org/10.3390/jcm11195716

■279 FEVAR patients (2012 – 2017) → 683 Advanta V12 BECS

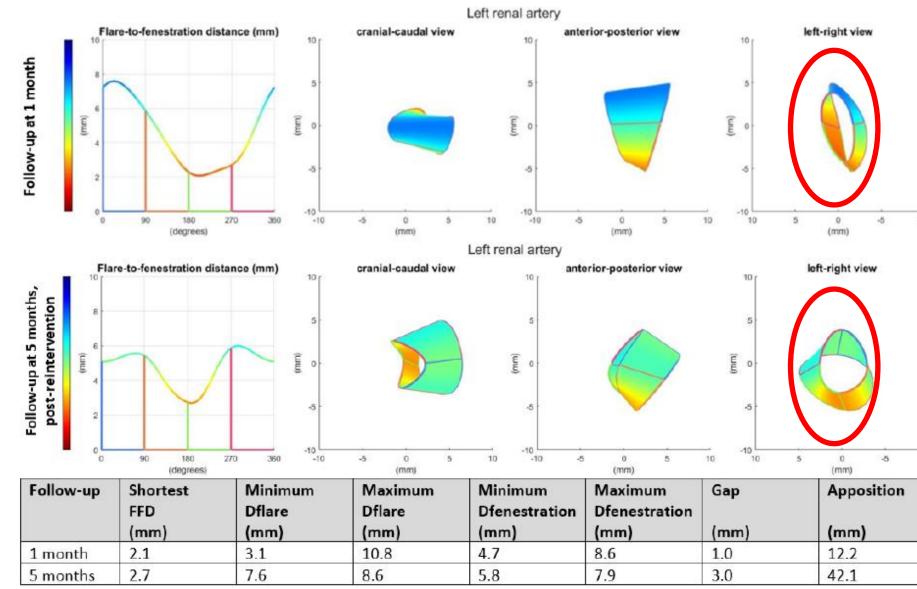

■Median imaging follow-up 21 (1 – 45) months

■649 (95%) uncomplicated


■34 (5%) complicated

- 2 during FEVAR
- ■5 without CTA to determine geometry
- 27 Advanta V12 with CTA to determine geometry

Endoleaks (E1 – E4)

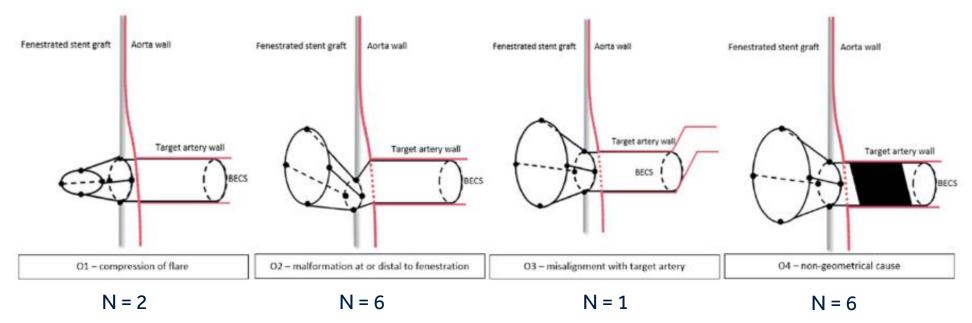

Endoleak E1 (needed proximal extension)

BECS #11 - E1 (type 3c endoleak)

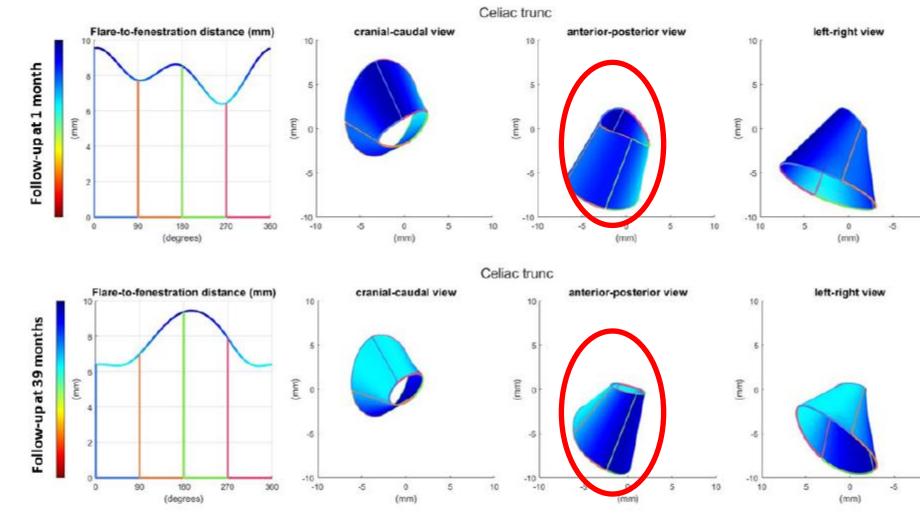
J. Clin. Med. 2022, 11, 5716. https://doi.org/10.3390/jcm11195716

Endoleak E2 (needed PTA at flared end)

BECS #13 - E2 (type 3c endoleak)


J. Clin. Med. 2022, 11, 5716. https://doi.org/10.3390/jcm11195716

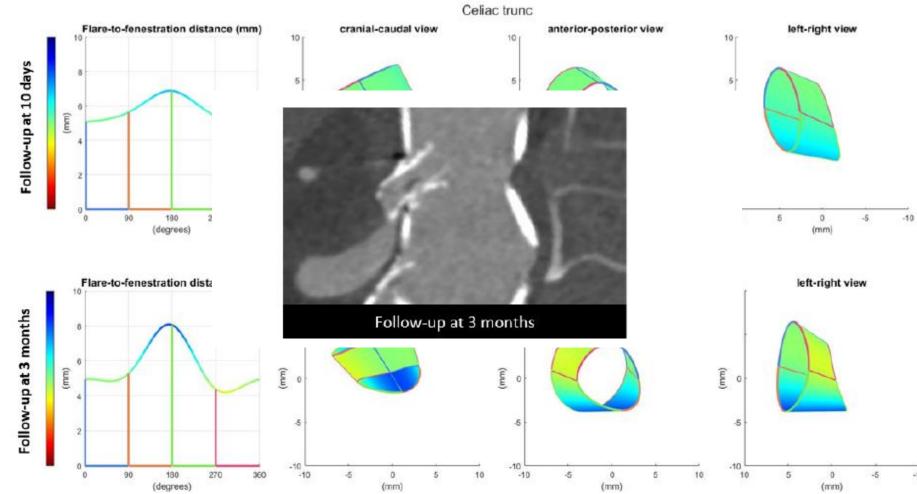
-10


-10

Obstructions (O1–O4)

J. Clin. Med. 2022, 11, 5716. https://doi.org/10.3390/jcm11195716

Obstruction O2 (needed PTA at fenestration)


Follow-up	Shortest FFD (mm)	Minimum Dflare (mm)	Maximum Dflare (mm)	Minimum Dfenestration (mm)	Maximum Dfenestration (mm)	Gap (mm)	Apposition (mm)
1 month	6.4	8.4	11.8	4.4	6.9	0	19.1
39 months	6.3	7.8	11.3	2.7	4.7	0	16.3

J. Clin. Med. 2022, 11, 5716. https://doi.org/10.3390/jcm11195716

-10

-10

Obstruction O3 (needed distal extension)

BECS #25 - O3

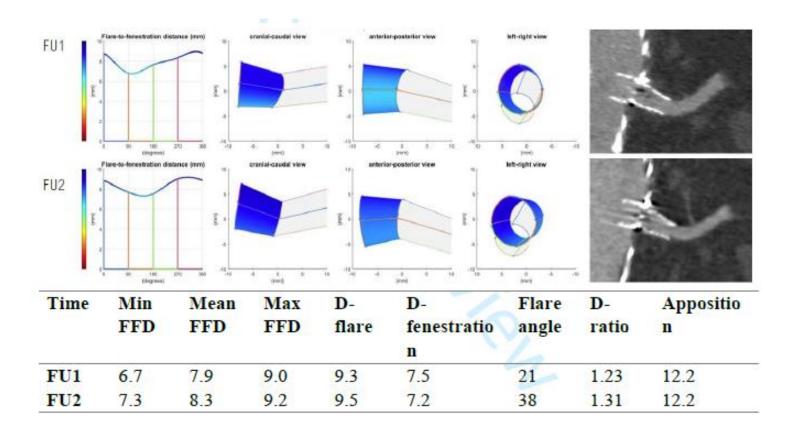
J. Clin. Med. 2022, 11, 5716. https://doi.org/10.3390/jcm11195716

-10

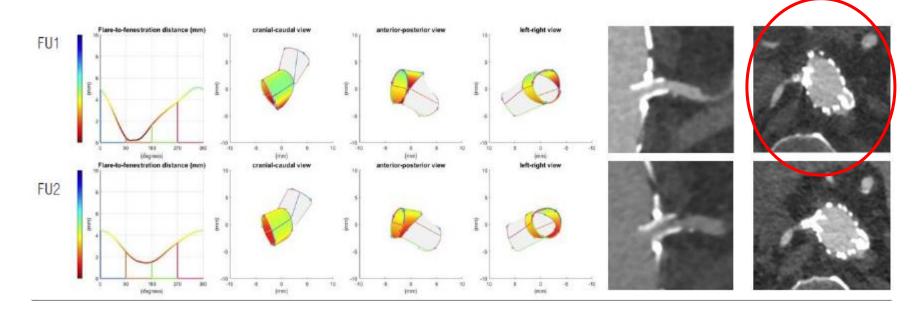
F1.	One single strut fracture;	N = 1
F2.	Multiple single strut fractures;	N = 1
F3.	Transverse linear BECS fracture without displacement;	
F4.	Transverse linear BECS fracture with displacement.	N = 1

Cause of fracture (F4)

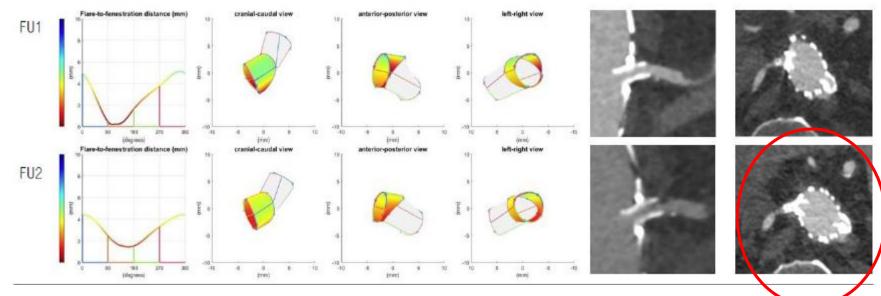
Migration of main body and stent fracture of Anaconda endograft, 3 years post-EVAR.


Three-dimensional geometric analysis of Viabahn VBX bridging stent grafts in fenestrated endovascular aortic repair: A multicentre, retrospective cohort study

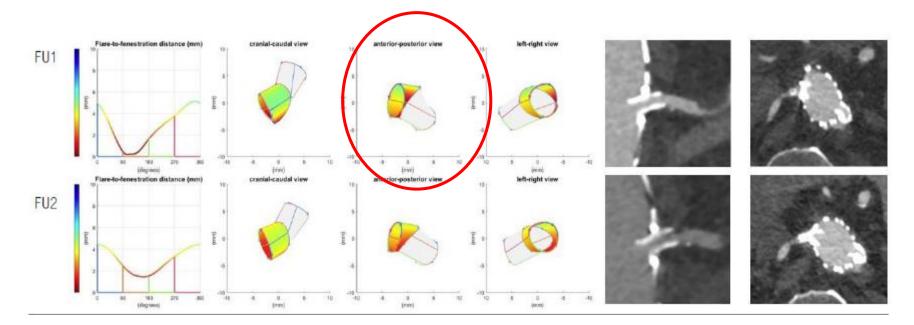
F. Fouad et al, JEVT 2024, accepted for publication.


•43 FEVAR patients \rightarrow 90 VBX

- Median imaging follow-up 14 (13 15) months
- ■87 (97%) uncomplicated


Uncomplicated

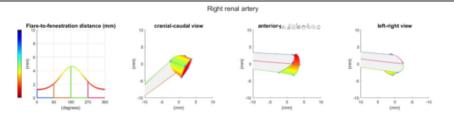
Complicated with endoleak at first post-FEVAR CT



Complicated with endoleak and progression AAA at follow-up CT

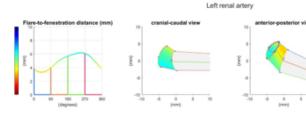
In retrospect type E1 endoleak at first post-FEVAR CT

Daily practice: geometrical analysis as additional tool in case of endoleak post-FEVAR


BECS geometrie meting FEVAR

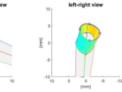
Patiënt nummer:	XXXXXXX
Analyse datum:	18-3-2024
Gedaan door:	Richte Schuurmann

Vraagstelling


pte behandeld voor een TAAA in 3 tempi. Verklaring voor groot endoleak? Lijkt meest waarschijnlijk op basis van een EL3c vanuit de RRA.

Geometrie analyse

Rechter nierarterie:


Minimal flare-to-fenestration distance = 1.2 mm Diameter flare = 5.9 mm Diameter fenestration = 5.9 mm Diameter <u>Distaal</u> = 4.3 mm

Linker nierarterie:

Minimal flare-to-fenestration distance = 3.3 mm Diameter flare = 6.0 mm Diameter fenestration = 6.0 mm Diameter Distaal = 3.6 mm

Conclusions

Majority of BECS post-FEVAR (Advanta V12, VBX) had uneventful course

In complicated cases standard CTA doesn't determine the cause of endoleak / complication

3D geometrical analysis of BECS classifies complications in Endoleaks, Obstructions, Fractures (or combination)

Facilitates true course of problem and guides targeted reintervention

Should be added in post-FEVAR CTA follow-up