

Do we need Dual antiplatelet after F/BEVAR?

Nana Petroula

German Aortic Center Hamburg Department of Vascular Diseases University Heart & Vascular Center University Medical Center Eppendorf

* No conflict of interest

*Do you prescribe DAPT or SAPT after f/bEVAR?

*Do you think that the evidence on the antiplatelet therapy after f/bEVAR is enough to support your decision?

CLINICAL PRACTICE GUIDELINE DOCUMENT

Editor's Choice — European Society for Vascular Surgery (ESVS) 2023 Clinical Practice Guidelines on Antithrombotic Therapy for Vascular Diseases

Cardiovascular events after AAA repair
2.5% higher risk for MI
2.9% higher risk for stroke
Aspirin improve long term survival

Cardiovascular events

Recommendation 46

Patients undergoing endovascular or open abdominal aortic aneurysm repair should be considered for aspirin (75 - 100mg) following repair to reduce the risk of secondary cardiovascular events.

Class	Level	References	ToE
IIa	В	Wong <i>et al.</i> (2022) ³⁵	

<u>No evidence</u> to suggest superiority or inferiority of any other antithrombotic therapy following AAA repair, including complex procedures

CLINICAL PRACTICE GUIDELINE DOCUMENT

Editor's Choice – European Society for Vascular Surgery (ESVS) 2024 Clinical Practice Guidelines on the Management of Abdominal Aorto-Iliac Artery Aneurysms

Introduction

The second debated issue was antithrombotic therapy to limit target vessel occlusion in the longer term: although there is a general trend towards the use of adjunctive antithrombotic drugs over single aspirin during follow up (e.g., DAPT or DOAC), there is a complete lack of evidence to support this choice and therefore, there could be attractive grounds for future clinical research studies. Overall, considering the wide lack of evidence, new clinical practice guidelines and reporting standards should include specific recommendations on antithrombotic therapy (statement 44 - Grade A).^{13,14} It may also be expected that antithrombotic therapy impacts not only the overall clinical effectiveness of F-BEVAR treatment but also its cost effectiveness, which remains a debated issue in need of further research.35

D'Oria M, et al. Editor's Choice - PRINciples of optimal antithrombotiC therapy and coagulation managEment during elective fenestrated and branched EndovaScular aortic repairs (PRINCE²SS): An International Expert Based Delphi Consensus Study. Eur J Vasc Endovasc Surg. 2022.

Methods

Multicenter retrospective

analysis

- f/bEVAR (Cook Medical)
- Non-ruptured aneurysms
- January 2018 to December 2022

Ν	Aortic centers	Contribution
1	German Aortic Center, Department of Vascular Medicine, University Heart & Vascular Center, Universitätsklinikum Eppendorf	246
2	Service de Chirurgie Vasculaire, Centre de l'Aorte, Centre Hospitalier Universitaire (CHU) Lille	237
3	Department of Vascular Surgery, Ludwig-Maximillian University Hospital	158
4	Aortic Center, Hôpital Marie Lannelongue, Groupe Hospitalier Paris Saint Joseph, Université Paris Saclay	149
5	Department of Vascular Surgery, University of Bologna, Policlinico Sant' Orsola Malpighi, Istituto di Cura a Carattere Scientifico (IRCCS)	124
6	Vascular Center, Department of Thoracic Surgery and Vascular Diseases, Skåne University Hospital	114
7	Department of Surgery, Division of Vascular Surgery and Surgical Research Laboratories, Medical University of Vienna, Vienna General Hospital	83
8	Section of Vascular Surgery, Department of Surgical Sciences, Uppsala University	62
9	Vascular Surgery Department, University Hospital of Larissa, Faculty of Medicine, University of Thessaly	53
10	Department of Vascular Surgery, School of Cardiovascular Medicine and Sciences, King's College London	45
11	Klinik für Gefäßchirurgie und Endovaskuläre Chirurgie, Universitätsklinikum Heidelberg	44
12	Department of Radiology, Leiden University Medical Center	43
13	Division of Vascular Surgery, Department of Clinical and Experimental Sciences, University of Brescia School of Medicine, ASST Spedali Civili of Brescia	36
14	Department of Vascular Surgery, St. Olav's Hospital, Trondheim University Hospital	26
15	Department of Vascular Surgery, Medical University Innsbruck	10

Primary outcomes

30-day mortality

Cardiovascular ischemic

events

Major ISTH hemorrhagic

events

Secondary outcomes

✓ Survival✓ TV patency✓ Freedom from endoleak

Patient cohort

1 430 patients

SAPT: 955 vs. DAPT: 475 patients

✓ ASA III-IV

SAPT: 91.6% vs. DAPT: 91.1%, p=.76

<u>Multivariate analysis</u> Sex (OR 1.5, 95% CI 1.1-2.0, p=.01) COPD (OR 1.9, 95% CI 1.2-2.4, p<.001)

Variable	SAPT	DAPT	р
Age (years)	72.1±8.3	71.6±7.8	.64
Males	80.1	84.6	.04
Tobacco use	68.6	75.9	.004
Hypertension	87.7	85.9	.32
Dyslipidemia	51.4	68	<.001
CAD	37.7	42.7	.07
MI	15.2	20.2	.03
CABG	9.6	9.6	.99
PCI	17.8	21.3	.14
CHF	11.3	7.6	.03
COPD	23.9	38.0	<.001
CKD	26.0	24.9	.65
Stroke	11.3	11.8	.79
PAD	18.2	18.5	.89
Prior aortic repair	32.7	24.8	.002
ΤΑΑΑ	34.7	39.2	.09
Symptomatic AA	8.0	6.7	.41
BEVAR	57.0	62.9	.03
FEVAR	37.8	31.5	.02

Primary 30-day outcomes

ariable	SAPT (955 patients)	DAPT (475 patients)	р
V ischemic events	11.9	8.2	037
lyocardial infarction	1.6	2.1	.47
chemic stroke	1.9	0.8	.13
Aajor stroke	0.4	0.2	.53
cute mesenteric ischemia	1.9	0.2	.009
Need for bowel resection	1.0	0.2	.09
cute limb ischemia	2.7	0.6	.008
pinal cord ischemia	5.8	5.5	.83
Grade 3	1.8	1.3	.46

Multivariate analysis

Patients under DAPT at lower risk for: Acute mesenteric ischemia (0.25 OR, 0.08-0.83 95% CI, p=.02) Lower limb ischemia (0.12 OR, 0.02-0.93 95% CI, p=.04)

Primary 30-day outcomes

Variable	SAPT (955 patients)	DAPT (475	р
		patients)	
ISTH defined major hemorrhagic	7.5	6.3	.397
events			
Intracranial hemorrhage	0.8	0.2	.16
Gastrointestinal bleeding	0.7	0.4	.48
Retroperitoneal bleeding	1.8	1.1	.29
Access hematoma needing	2.4	3.6	.21
reintervention			
Access hematoma conservatively	6.0	2.2	.003
treated			

Endoleak & TV patency at 30 days

No difference for any type of endoleak SAPT: 37.6% vs. DAPT: 39.1%, p=.61 Type I: SAPT: 4.0% vs. DAPT: 2.9% (p=.12)Type II: SAPT 25.3% vs. DAPT: 29.2% (p=.17)

Type III: SAPT: 5.6% vs. DAPT: 6.5% (p=.76) No difference in TV patency SAPT: 97.2% vs DAPT: 97.2%, p=.94

Aspirin vs. Clopidogrel

Aspirin group (864 cases) vs. Clopidogrel group (91 cases)

30-day main outcomes

- Mortality: Aspirin: 2.0% vs. Clopidogrel: 3.3%, p=.40
- **CV ischemic events:** Aspirin: 11.8% vs. Clopidogrel; 13.2%, p=.70
- **ISTH major hemorrhagic events:** Aspirin: 7.5% vs Clopidogrel: 7.7%, p=.95

Follow-up outcomes

SAPT: 540 patients vs. DAPT: 391 patients

Follow-up: 21.8±2.9 months

At 36 months of follow-up:

Survival (log rank, p=.71)
SAPT: 84.3%, SE 2.1% vs. DAPT: 85.2%, SE 2.6%

Freedom from endoleak (log rank, p=.04)
SAPT: 79.4%, SE 2.4% vs DAPT: 73.7%, SE 3.1%

<u>Cox-regression analysis</u> Sex (HR 1.0, 95% CI 0.66-1.6, p=.91) COPD (HR 0.9, 95% CI 0.6-1.6, p=.79)

Follow-up outcomes

Significant difference at 36 months

Log-rank, p=.007

* TV patency at 36 months* SAPT: 93.4%, SE 0.7%

VS.

* DAPT: 96.6%, SE 0.7%

Cox-regression analysis

COPD (HR 1.05, 95% CI 0.69-1.61, p=.79) Sex (HR 1.1, 95% CI 0.74-1.76, p=.55) Aortic dissection (HR 1.2, 95% CI 0.78-2.0, p=.36) TAAA (HR 0.98, 95% CI 0.66-1.5, p=.94)

Follow-up outcomes

Significant difference at 36 months within BEVAR

Log-rank, p<.001

* TV patency at 36 months

* SAPT: 87.2%, SE 2.1%

VS.

* DAPT: 94.9%, SE 1.9%

Primary Patency

Cox-regression analysis BEVAR predictor for worse TV patency (BEVAR: HR 2.03, 95% CI 1.36-3.03, p<.001)

3-6 months APT duration

SAPT: 540 patients vs. DAPT: 196 patients

No difference at 36 months

Survival (log rank, p=.19)
SAPT: 84.3%, SE 2.3% vs. DAPT: 82.8%, SE 2.9%

Freedom from endoleak (log rank, p=.91)
SAPT: 79.6%, SE: 2.4% vs. DAPT: 81.3%, SE: 3.4%

TV patency at 36 months SAPT: 93.4% (SE 0.7%) vs. DAPT: 97.4%, SE 0.7%

Follow-up outcomes overview

12-month outcomes within patients with at	SAPT (955 patients)	DAPT (475 patients)	P (log-rank)
least 1 month of SAPT vs. DAPT			
Survival	93.2%	92.5%	.72
Freedom from endoleak	88.1%	81.5%	.04
TV patency	97.0%	97.7%	.007
12-month outcomes within patients with 3 to 6	SAPT (540 patients)	DAPT (196 patients)	P (log-rank)
months of SAPT vs. DAPT			
Survival	93.2%	94.8%	.19
Freedom from endoleak	88.1%	88.0%	.91
TV patency	97.0%	97.7%	.005

* DAPT better in terms of cardiovascular ischemic events after

F/BEVAR

* Similar major ISTH hemorrhagic event rates

* Patients may benefit from DAPT in terms of TV patency

* Especially, those treated with BEVAR

Thank you