How to do EVARs with no Contrast and without FORS / IOPS

Vascular Surgery
University of Bologna - DIMEC
IRCCS University Hospital S.Orsola
Bologna, Italy

enrico.gallitto2@unibo.it

E. Gallitto

Statement of financial interest

Enrico Gallitto

✓ Cook Medical - Clinical proctor for F/B-EVAR

✓ No disclosure for the present talk

Why EVARs with no Contrast?

✓ Acute Kidney Injury
after endovascular aortic procedure
EVAR / F-BEVAR

review www.kidney-international.org

Endovascular aneurysm repair (EVAR)— and transcatheter aortic valve replacement (TAVR)—associated acute kidney injury

Kenar D. Jhaveri^{1,4}, Athanasios N. Saratzis^{2,4}, Rimda Wanchoo¹ and Pantelis A. Sarafidis³

¹Division of Nephrology, Northwell Health, Hofstra Northwell School of Medicine, Great Neck, New York, USA; ²Leicester NIHR Cardiovascular Biomedical Research Unit, University of Leicester, UK; and ³Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece

Kidney International, 2017

Mechanisms of Renal damage

Contrast - induced injury
Tubular

Endothelial damage:

 PVD, anemia, thrombocytopenia

Aneurysm sac:

Inflammatory infiltrate

EVAR

Renal arteries:

- Microemboli
- Occlusion
- Stenosis
- Dissection

Contrast → tubular injury

Foreign body (graft) → inflammatory reaction

Ischemia-reperfusion injury (lower limbs)

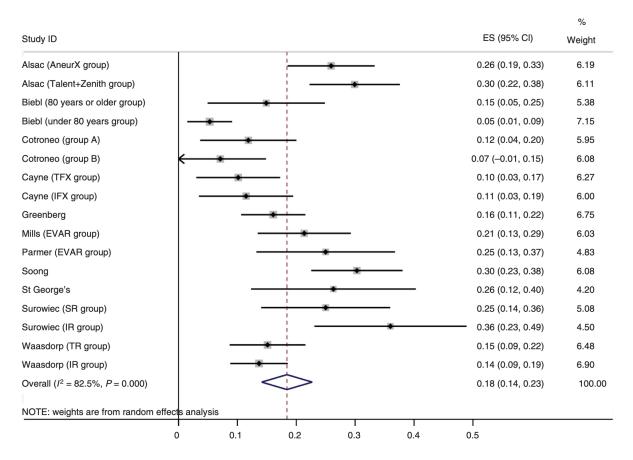
Endovascular aneurysm repair (EVAR) – and transcatheter aortic valve replacement (TAVR) – associated acute kidney injury

Kenar D. Jhaveri^{1,4}, Athanasios N. Saratzis^{2,4}, Rimda Wanchoo¹ and Pantelis A. Sarafidis³

Acute Kidney Injury post EVAR

5.5% - 19%

Reference	Туре	Date	EVAR (n)	AKI criterion	AKI incidence	AKI (n)	AKI stage > 2 (n)	Dialysis	Urine output available
Pirgakis et al. ³⁷	Retrospective	2014	87	AKIN	17%	15	None	1	No
Ueta et al. ³⁹	Prospective	2014	47	AKIN	14%	6	Stage 2: 1	None	No
Pisimisis et al. ³⁸	Retrospective	2013	208	RIFLE	17%	36	NA	NA	No
Saratzis et al.4	Prospective	2015	149	AKIN & KDIGO	19%	28	Stage 2: 3	None	Yes
Saratzis et al. ⁴⁹	Retrospective	2015	484	AKIN	12%	58	NA	None	No
Saratzis et al. ⁵	Retrospective	2015	947	KDIGO	18%	167	Stage 2: 12; Stage 3: 2	None	No
Castagno et al. 130	Retrospective	2016	146	Aneurysm Score	5.5%	8	NA	None	No
Obata et al. 131	Prospective	2016	95	AKIN	9.4%	9	Stage 2: 1	None	No


AKI, acute kidney injury; AKIN, Acute Kidney Injury Network Criteria; EVAR, endovascular aneurysm repair; KDIGO, Kidney Disease Improving Global Outcomes; NA, not available; RIFLE, risk, injury, failure, loss, end-stage renal disease.

¹Division of Nephrology, Northwell Health, Hofstra Northwell School of Medicine, Great Neck, New York, USA; ²Leicester NIHR Cardiovascular Biomedical Research Unit, University of Leicester, UK; and ³Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Greece

Kidney International, 2017

A systematic review and meta-analysis indicates underreporting of renal dysfunction following endovascular aneurysm repair

Alan Karthikesalingam¹, Sandeep S. Bahia¹, Shaneel R. Patel¹, Bilal Azhar¹, Dan Jackson², Lynne Cresswell², Robert J. Hinchliffe¹, Peter J.E. Holt¹ and Matt M. Thompson¹ *Kidney International, 2014*

Clinically relevant

Renal function deterioration

@ 1 year 18%

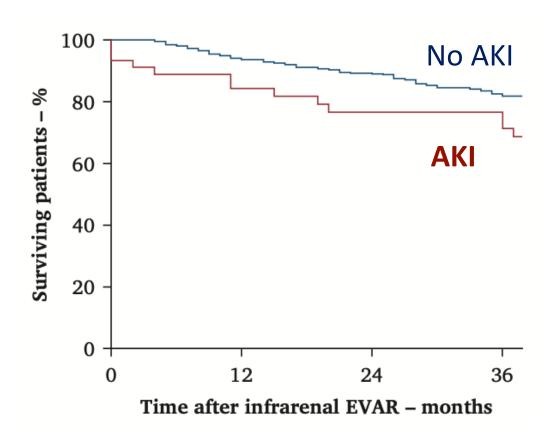
(95% CI: 14 - 23%; I₂ of 82.5%)

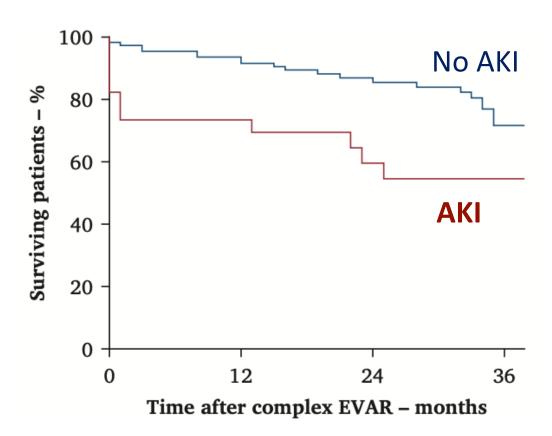
Incidence, Prognostic Significance, and Risk Factors of Acute Kidney Injury Following Elective Infrarenal and Complex Endovascular Aneurysm Repair

Vinamr Rastogi ^{a,b,*}, Jorg L. de Bruin ^a, Elke Bouwens ^{a,c}, Sanne E. Hoeks ^c, Sander ten Raa ^a, Marie Josee van Rijn ^a, Bram Fioole ^d, Marc L. Schermerhorn ^b, Hence J.M. Verhagen ^a

EJVS, 2022

	Post EVAR (%)	Post F/B-EVAR (%)
AKI	9	23


Iodinated contrast media independent risk factors for AKI


		_
	Odds ratio (95% CI)	p value
AKI development following		
infrarenal EVAR		
Prior CKD, eGFR <60 mL/min/1.73 m ²	2.2 (1.03–4.8)	.042
Neck diameter per 10 mm	2.9 (1.1–8.4)	.019
Neck length per 10 mm	1.0 (0.82-1.3)	.86
Infrarenal fixation (ref.: suprarenal fixation)	0.51 (0.11–1.6)	.30
Contrast use per 10 mL	0.98 (0.84-1.1)	.80
AKI development following complex EVAR		
Prior CKD, eGFR <60 mL/min/1.73 m ²	1.6 (0.6–4.2)	.35
Suprarenal/TAAA (ref.: juxtarenal)	2.0 (0.25–12)	.45
Branched device (ref.:	1.4 (0.23–11)	.74
Contrast use per 10 mL	1.1 (1.01-1.2)	.034

Incidence, Prognostic Significance, and Risk Factors of Acute Kidney Injury Following Elective Infrarenal and Complex Endovascular Aneurysm Repair

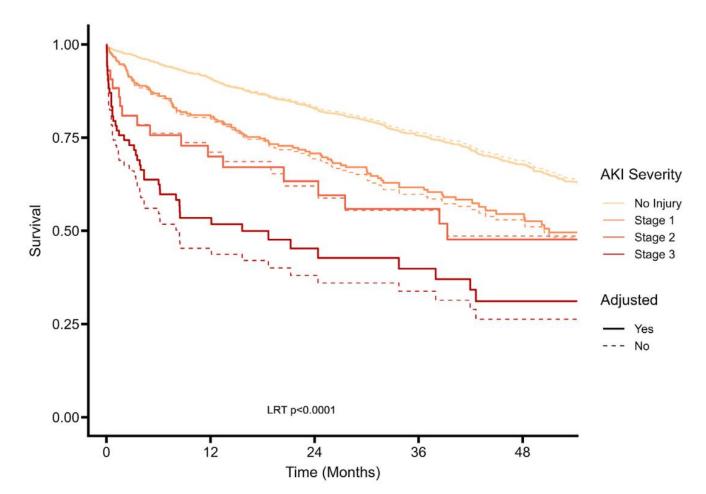
Vinamr Rastogi ^{a,b,*}, Jorg L. de Bruin ^a, Elke Bouwens ^{a,c}, Sanne E. Hoeks ^c, Sander ten Raa ^a, Marie Josee van Rijn ^a, Bram Fioole ^d, Marc L. Schermerhorn ^b, Hence J.M. Verhagen ^a

EJVS, 2022

Severity of acute kidney injury is associated with decreased survival after fenestrated and branched endovascular aortic aneurysm repair

Eric J. Finnesgard, MD, MS,^a Adam W. Beck, MD,^b Matthew J. Eagleton, MD,^c Mark A. Farber, MD,^d Warren J. Gasper, MD,^e W. Anthony Lee, MD,^f Gustavo S. Oderich, MD,^g Darren B. Schneider, MD,^h Matthew P. Sweet, MD, MS,ⁱ Carlos H. Timaran, MD,^j Jessica P. Simons, MD, MPH,^a and Andres Schanzer, MD,^a on Behalf of the United States Aortic Research Consortium, *Worcester and Boston, MA; Birmingham, AL; Chapel Hill, NC; San Francisco, CA; Boca Raton, FL; Houston and Dallas, TX; Philadelphia, PA; and Seattle, WA*

JVS, 2023


- ✓ Acute Kidney Injury 18% of cases
- ✓ Grade of Severity related to amount of Iodinated Contrast Media

Variabl	e	No injury (n = 1981)	Stage 1 (n = 316)	Stage 2 (n = 42)	Stage 3 (n = 74)	<i>P</i> value
Cont	rast, mL	105 [70.5-150]	106 [75-160]	132.5 [80.8-197.1]	134 [99.5-201.2]	<.0001

Severity of acute kidney injury is associated with decreased survival after fenestrated and branched endovascular aortic aneurysm repair

Eric J. Finnesgard, MD, MS,^a Adam W. Beck, MD,^b Matthew J. Eagleton, MD,^c Mark A. Farber, MD,^d Warren J. Gasper, MD,^e W. Anthony Lee, MD,^f Gustavo S. Oderich, MD,^g Darren B. Schneider, MD,^h Matthew P. Sweet, MD, MS,^f Carlos H. Timaran, MD,^f Jessica P. Simons, MD, MPH,^a and Andres Schanzer, MD,^a on Behalf of the United States Aortic Research Consortium, *Worcester and Boston, Ma*; *Birmingham, AL*; *Chapel Hill, NC*; *San Francisco, CA*; *Boca Raton, FL*; *Houston and Dallas, TX*; *Philadelphia, PA*; and *Seattle, WA*

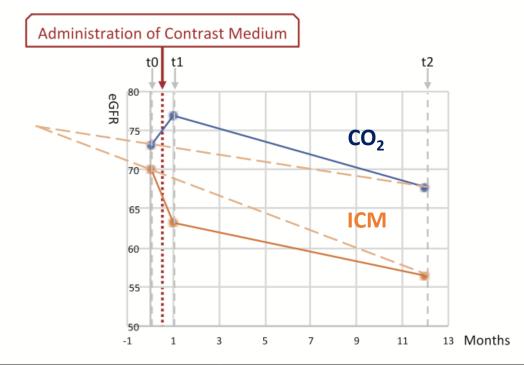
Mortality is related to different stages of AKI

Why EVARs with no Contrast?

- ✓ Acute Kidney Injury
 after endovascular aortic procedure
 EVAR / F-BEVAR
- ✓ Automated CO₂ angiography
 Feasible alternative to ICM

Renal Benefits of CO2 as a Contrast Media for EVAR Procedures: New Perspectives on I Year Outcomes

Journal of Endovascular Therapy I-10
© The Author(s) 2023
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/15266028231162258
www.jevt.org


Marco Busutti, MD, PhD^{1,2*}, Alice Sensoni, MD^{2**}, Andrea Vacirca, MD, PhD^{3,4}, Chiara Abenavoli, MD¹, Chiara Donadei, PhD², Anna Laura Croci Chiocchini, MD, PhD¹, Matteo Righini, MD⁵, Giorgia Comai, MD, PhD¹, Alessia Pini, MD³, Gianluca Faggioli, MD, PhD^{3,4}, Enrico Gallitto, MD, PhD^{3,4}, Gaetano La Manna, MD, PhD^{1,2}, and Mauro Gargiulo, MD, PhD^{3,4}

JET, 2023

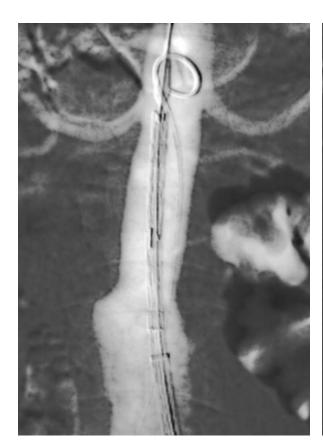
Postoperative

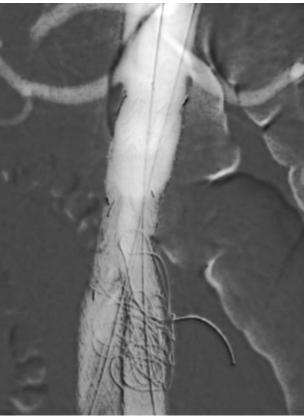
	ICM (%)	CO ₂ + ICM (%)	Р
AKI	27	9	.04

Renal function worsening @1y

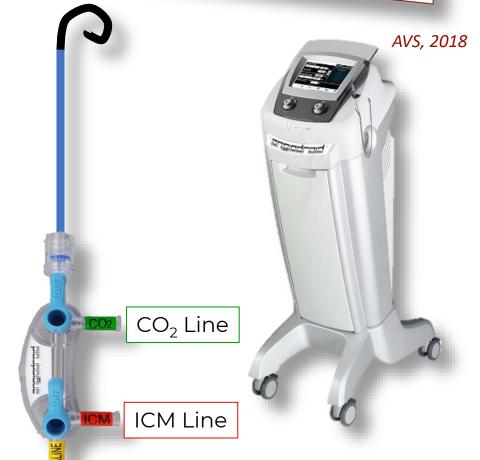
	eGFR t0	eGFR t1	eGFR t2 - 1 year FU	
CO2/CO2+ICM	73 ± 21	77± 20	68 ± 21	
ICM	70 ± 17	63 ± 16	57 ± 17	

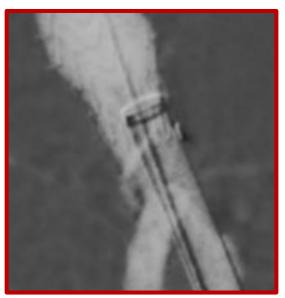
eGFR t0 = eGFR pre-treatment; eGFR t1 = eGFR post-treatment; eGFR1 t2 = eGFR at 1 year follow up


Why EVARs with no Contrast?


- ✓ Acute Kidney Injury
 after endovascular aortic procedure
 EVAR / F-BEVAR
- ✓ Automated CO₂ angiography
 Feasible alternative to ICM

CO₂ aortography for EVAR

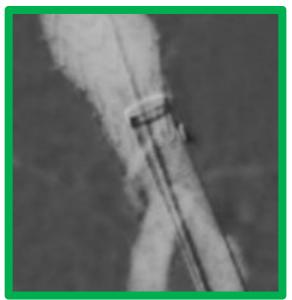

- ✓ Volume 100 mL
- ✓ Pressure 600 mmHg


Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

Chiara Mascoli, Gianluca Faggioli, Enrico Gallitto, Vincenzo Vento, Rodolfo Pini, Andrea Vacirca, Giuseppe Indelicato, Mauro Gargiulo, and Andrea Stella, Bologna, Italy

Vascular Surgery - University of Bologna

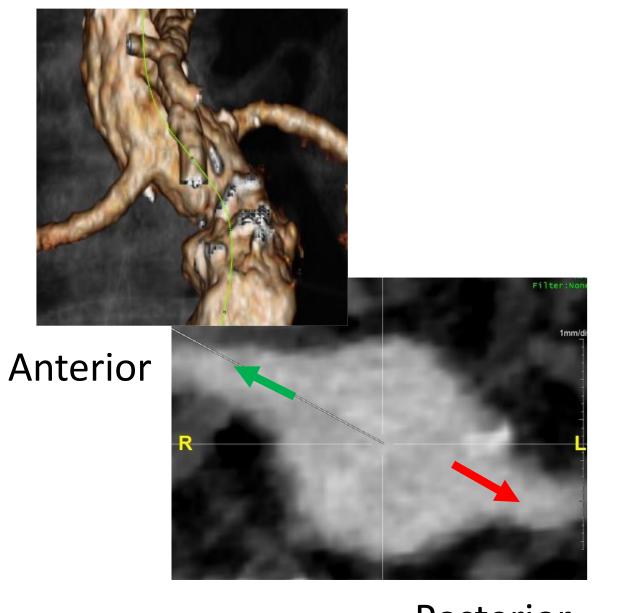
Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair


Chiara Mascoli, Gianluca Faggioli, Enrico Gallitto, Vincenzo Vento, Rodolfo Pini, Andrea Vacirca, Giuseppe Indelicato, Mauro Gargiulo, and Andrea Stella, Bologna, Italy

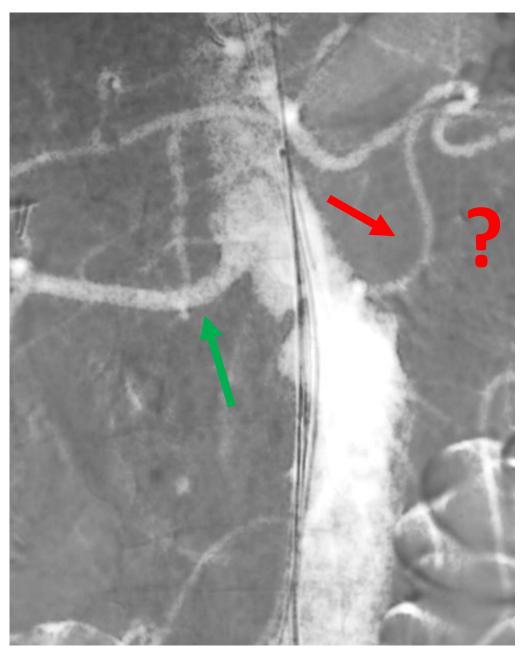
CO₂ angiography in EVAR

Feasible, Safe, Effective

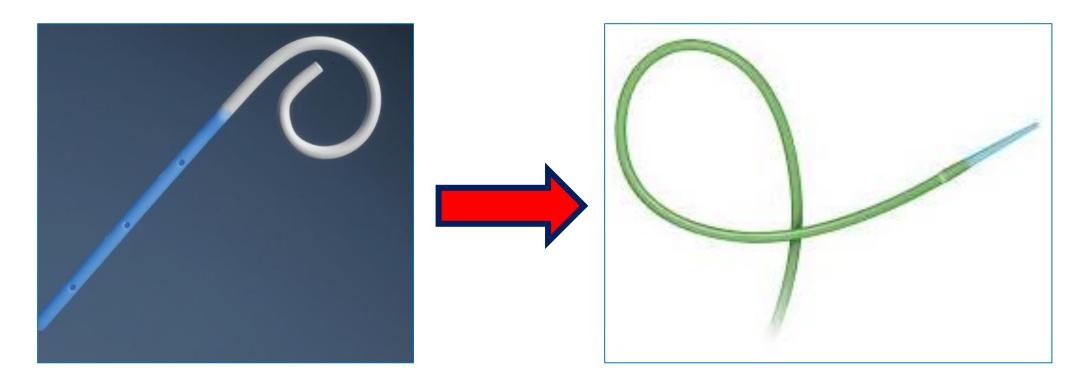
Diagnostic angiography	%
Renal artery detection	61
Hypogastric detection	100


Standardization of a Carbon Dioxide Automated System for Endovascular Aortic Aneurysm Repair

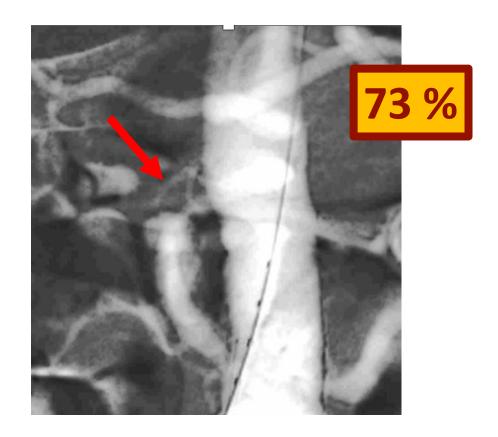
Chiara Mascoli, Gianluca Faggioli, Enrico Gallitto, Vincenzo Vento, Rodolfo Pini, Andrea Vacirca, Giuseppe Indelicato, Mauro Gargiulo, and Andrea Stella, Bologna, Italy

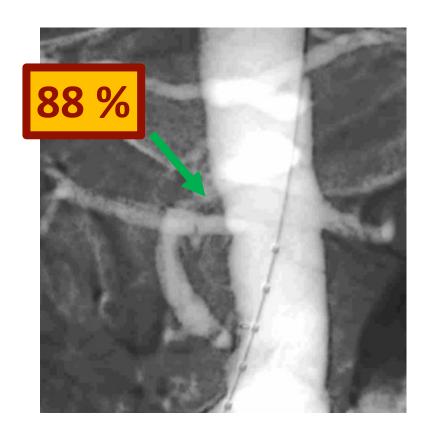

CO₂ angiography in EVAR

Feasible, Safe, Effective


Diagnostic angiography%Renal artery detection61Hypogastric detection100

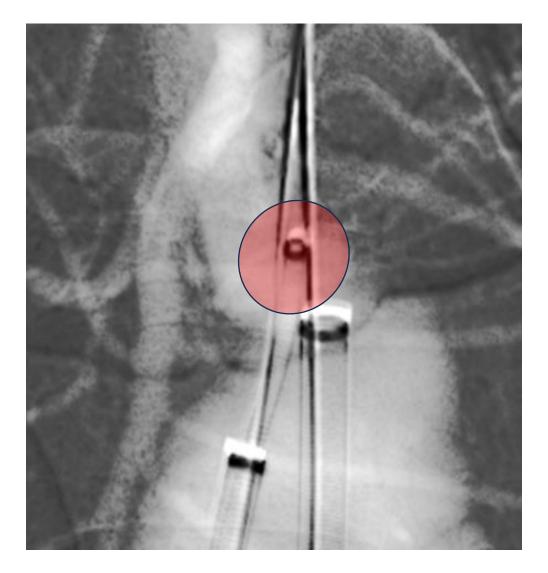
Posterior

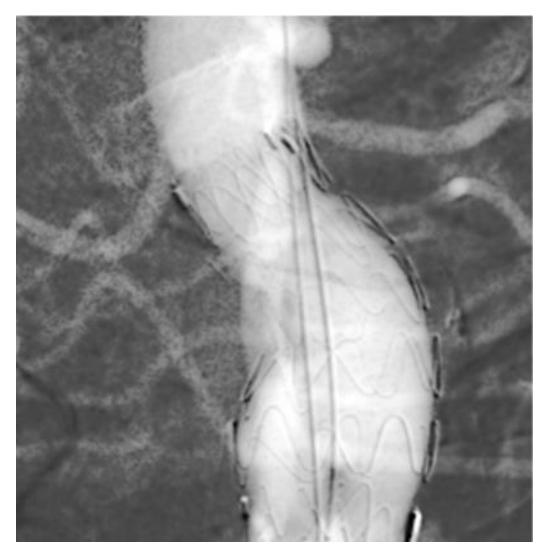

Renal arteries detection


Multi Holes Pigtail catheter 5F, 65 cm

Single Hole Introducer 5F, 45 - 55 cm

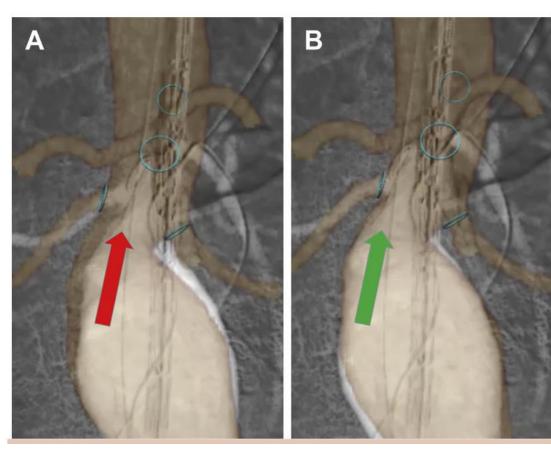
Renal arteries detection




Multi Holes Pigtail catheter 5F, 65 cm

Single Hole Introducer 5F, 45 - 55 cm

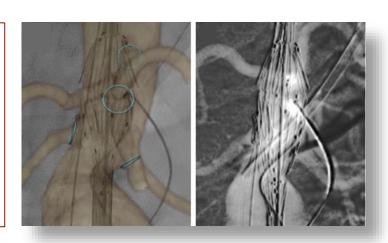
Renal arteries detection - 5 F, 45cm introducer



The benefit of combined carbon dioxide automated angiography and fusion imaging in preserving perioperative renal function in fenestrated endografting

Enrico Gallitto, MD, PhD, Gianluca Faggioli, MD, Andrea Vacirca, MD, Rodolfo Pini, MD, PhD, Chiara Mascoli, MD, Cecilia Fenelli, MD, Antonino Logiacco, MD, Mohammad Abualhin, MD, and Mauro Gargiulo, MD, Bologna, Italy

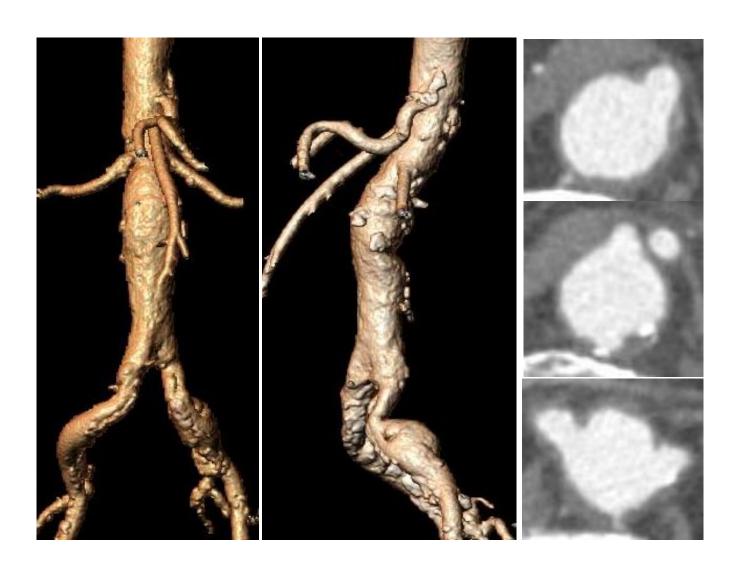
JVS, 2020

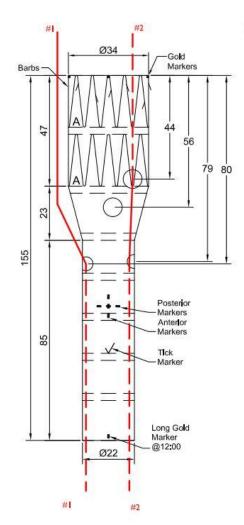


F/B-EVAR combining Vessel Navigator + CO₂ angiography

The benefit of combined carbon dioxide automated angiography and fusion imaging in preserving perioperative renal function in fenestrated endografting

Enrico Gallitto, MD, PhD, Gianluca Faggioli, MD, Andrea Vacirca, MD, Rodolfo Pini, MD, PhD, Chiara Mascoli, MD, Cecilia Fenelli, MD, Antonino Logiacco, MD, Mohammad Abualhin, MD, and Mauro Gargiulo, MD, Bologna, Italy


JVS, 2020



	CO ₂ + FI, median (IQR)	ICM + FI, median (IQR)	Р
Procedure time, minutes	290 (135)	348 (111)	.07
Fluoroscopy time, minutes	60 (33)	75 (17)	.25
Total DAP, mGy•cm ²	1,201,117 (571,310)	892,108 (834,558)	.27
ICM, mL	41 (26)	139 (88)	.001

	CO ₂ + FI, median (IQR)	ICM + FI, median (IQR)	Р
Creatinine increase (mg/dL)	0.09 (0.03)	0.3 (0.4)	.049
Hospitalization (days)	5 (1)	7.5 (4)	.002

FEVARs with no Contrast?

Catheter Pathway

REINFORCED LARGE FENESTRATION #I

Preloaded Catheter access from above (#2)

Strut Free
DIAMETER: 8mm
DIST FROM PROX EDGE: 44mm
CLOCK: 1:30
IVD: 27mm

REINFORCED LARGE FENESTRATION #2

***Strut Free**
DIAMETER: 8mm
DIST FROM PROX EDGE: 56mm
CLOCK: 12:15
IVD: 27mm

REINFORCED SMALL FENESTRATION #I

Preloaded Catheter access from below (#2)
DIAMETER: 6mm
DIST FROM PROX EDGE: 79mm
CLOCK: 3:15
IVD: 21 mm

REINFORCED SMALL FENESTRATION #2

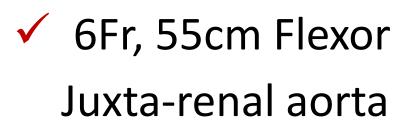
Preloaded Catheter access from below (#1)
DIAMETER: 6mm
DIST FROM PROX EDGE: 80mm
CLOCK: 10:00
IVD: 21mm

- SINGLE DIAMETER REDUCING TIES
- LOW PROFILE FABRIC

MODIFIED PRELOADED DELIVERY SYSTEM (Biport handle and preloaded catheters)

Plus.

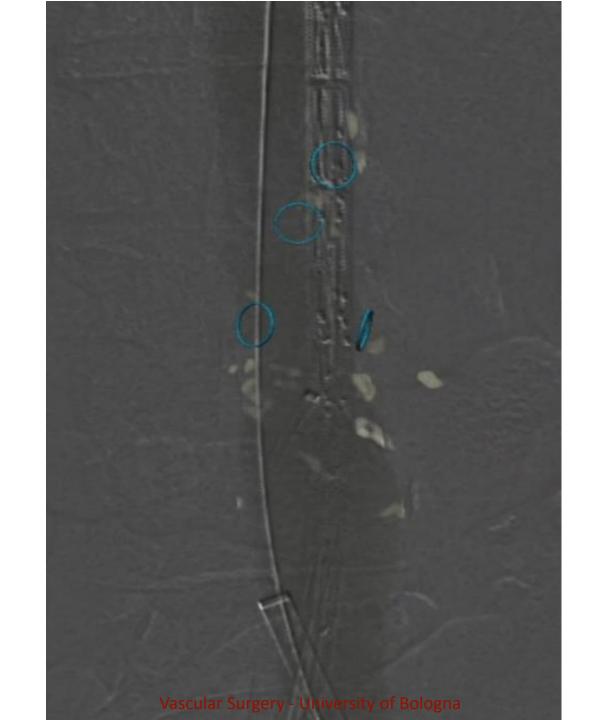
G32595 - AAA-BIFURCATED-GRAFT


(As per ZFEN-D-12-45-76)

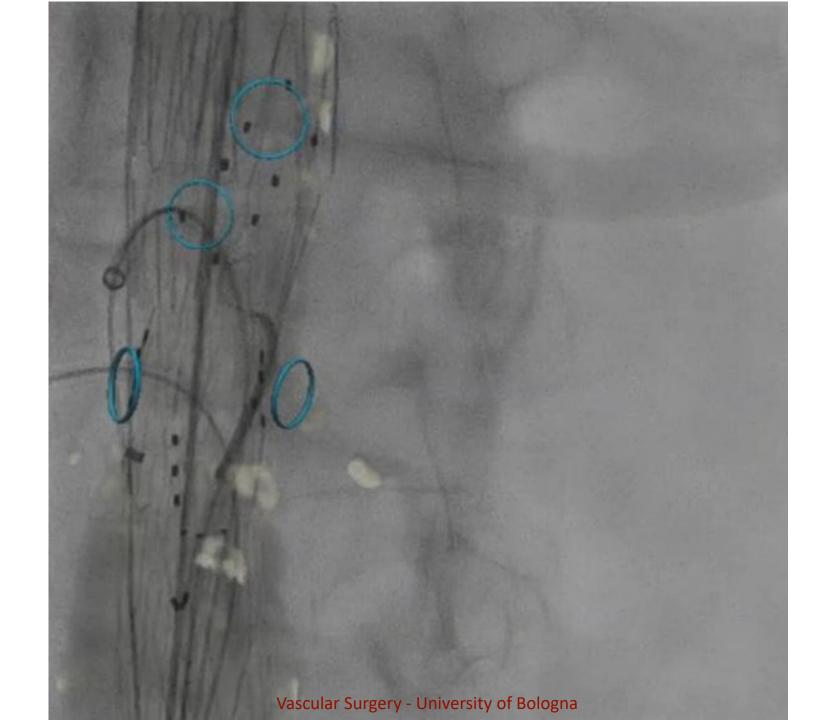
Ipsilateral Leg Extension ZISL-16-93

Contralateral Leg Extension

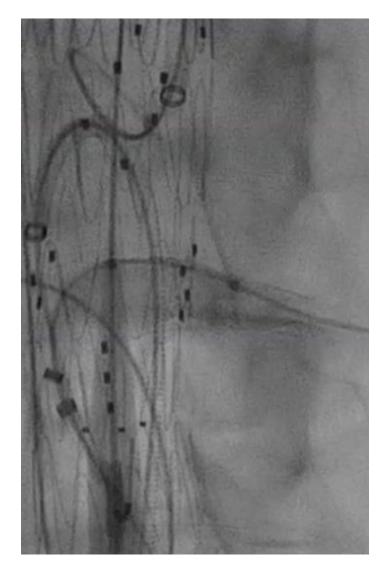
ZBIS-12-61-41

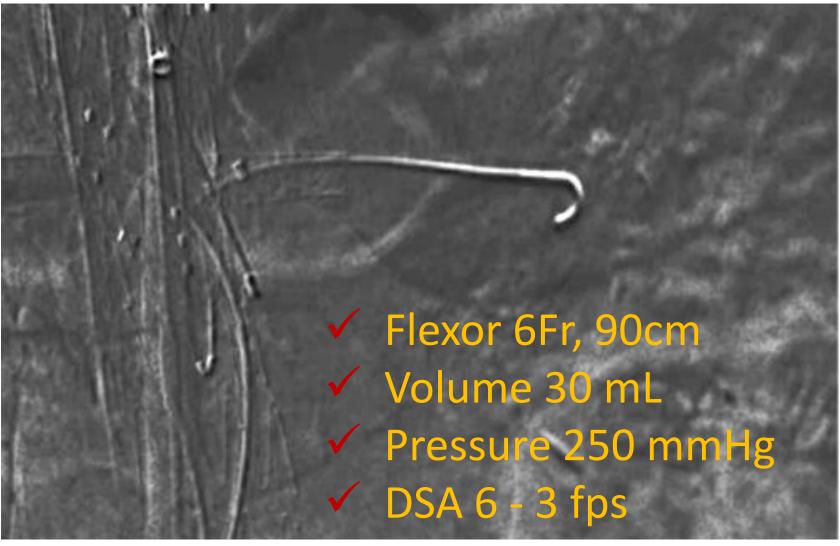

Bridging limb ZISL-16-59

✓ Volume 100 mL

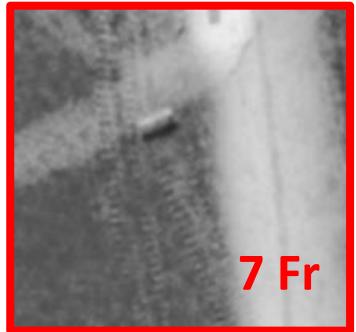

✓ Pressure 650 mmHg

✓ DSA 6 - 3 fps

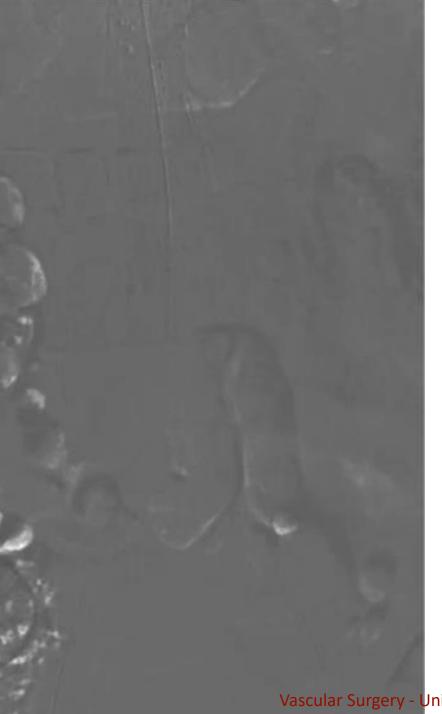




Selective Renal Artery angiography



SMA angiography from the aorta



- ✓ Volume 100 mL
- ✓ Pressure 650 mmHg

Completion angiography
8 Fr from above

Completion angiography from femoral introducer

4 FEN + ZBIS					
Fluoroscopy time	46 min				
DAP	869.730 mGy/cm ²				
CO ₂	2180 mL				

Vascular Surgery - University of Bologna

No contrast FEVAR Prospective Study

ClinicalTrials.gov ID: NCT05304026

- ✓ FEVAR for j/p-AAAs
- ✓ November 2023 December 2024
- ✓ Philips Hybrid Room
- ✓ Fusion Imaging
- ✓ Angiodroid CO₂ Injector

Aortography

100 mL, 650 mmHg

Selective TVVs angiography

30 mL, 250mmHg

✓ DSA 3 f / s

No contrast FEVAR Prospective Study

ClinicalTrials.gov ID: NCT05304026

✓ Cases enrolled @ February 2024 17

	n	%
Technical Success	17	100
AKI	1	6
Reintervention @ 30-day	0	-

	median	IQR
Iodinated Contrast media (mL)	15	5 - 24

CO₂ reduces the postoperative renal impairment

CO₂ Automated Angiography in Endovascular Aortic Repair Preserves Renal Function to a Greater Extent Compared with Iodinated Contrast Medium. Analysis of Technical and Anatomical Details

Andrea Vacirca, Gianluca Faggioli, Chiara Mascoli, Enrico Gallitto, Rodolfo Pini, Paolo Spath, Antonino Logiacco, Sergio Palermo, and Mauro Gargiulo, Italy

	Tot $N=321$ N (percent) or mean \pm SD	CO_2 -EVAR = 72 N (percent) or mean \pm SD	ICM-EVAR = 249 N (percent) or mean \pm SD	P value
Death Postoperative creatinine (mg/dL)	$4~(1.2\%) \ 1.16 \pm 0.7$	$0 \\ 1.2 \pm 0.9$	$4~(1.6\%) \ 1.15 \pm 0.6$	0.93 0.53
Postoperative eGFR (mL/min)	67.8 ± 7.1	69.2 ± 7.8	67.2 ± 6.7	0.47
Creatinine increase (mg/dL)	0.15 ± 0.08	0.08 ± 0.04	0.17 ± 0.09	0.01ª
eGFR decrease (mL/min)	8.8 ± 4.9	2.3 ± 1.1	10.6 ± 5.3	<0.001 ^a
Renal function worsening requiring hemodialysis	2 (0.6%)	0	2 (0.8%)	1
Post-OP hospital stay (days)	4.8 ± 3.1	4 ± 2.3	5 ± 3.5	0.27

CO₂ increases radiation exposure

CO₂ Automated Angiography in Endovascular Aortic Repair Preserves Renal Function to a Greater Extent Compared with Iodinated Contrast Medium. Analysis of Technical and Anatomical Details

Andrea Vacirca, Gianluca Faggioli, Chiara Mascoli, Enrico Gallitto, Rodolfo Pini, Paolo Spath, Antonino Logiacco, Sergio Palermo, and Mauro Gargiulo, Italy

	Tot $N=321$ N (percent) or mean \pm SD	CO_2 -EVAR = 72 N (percent) or mean \pm SD	$ICM ext{-}EVAR = 249 \ N$ (percent) or mean \pm SD	P value
Urgent cases Suprarenal fixation	25 (7.7%) 175 (54.5%)	4 (5.5%) 41 (57%)	21 (8.4%) 134 (53.8%)	0.42 0.9
graft ICM amount (mL) Fluoroscopy radiation dose DAP (mGy/cm²)	80.9 ± 8.5 $150,159.2 \pm 129,219.1$	52.8 ± 6.1 $142,109.5 \pm 113,534.4$	88.1 ± 9.2 $156,439.2 \pm 132,303.8$	<0.001 ^a 0.33
DSA radiation dose	$265,270.9 \pm 247,845.7$	$366,901.1 \pm 307,701.3$	$175,862.6 \pm 126,061.3$	<0.001 ^a
DAP (mGy/cm ²) Total radiation dose	$414,635.3 \pm 320,944.8$	500,550.8 ± 377,394.6	$332,301.8 \pm 230,139.3$	0.001 ^a
Anesthesia type: General Spinal Local	135 (42.3%) 181 (56.7%) 3 (0.9%)	28 (38.9%) 44 (61.1%) 0	107 (43.3%) 137 (55.5%) 3 (1.2%)	0.48

CO₂ increases radiation exposure

- Set up of Hybrid rooms (2 f/s)
- Procedural protocols optimization

CO₂ Automated Angiography in Endovascular Aortic Repair Preserves Renal Function to a Greater Extent Compared with Iodinated Contrast Medium. Analysis of Technical and Anatomical Details

Andrea Vacirca, Gianluca Faggioli, Chiara Mascoli, Enrico Gallitto, Rodolfo Pini, Paolo Spath, Antonino Logiacco, Sergio Palermo, and Mauro Gargiulo, Italy

	Tot $N=321$ N (percent) or mean \pm SD	CO_2 -EVAR = 72 N (percent) or mean \pm SD	$ICM ext{-}EVAR = 249 N$ (percent) or mean \pm SD	P value
Urgent cases Suprarenal fixation graft	25 (7.7%) 175 (54.5%)	4 (5.5%) 41 (57%)	21 (8.4%) 134 (53.8%)	0.42 0.9
ICM amount (mL) Fluoroscopy radiation dose DAP (mGy/cm ²)	80.9 ± 8.5 $150,159.2 \pm 129,219.1$	52.8 ± 6.1 $142,109.5 \pm 113,534.4$	88.1 ± 9.2 $156,439.2 \pm 132,303.8$	<0.001 ^a 0.33
DSA radiation dose DAP (mGy/cm²)	$265,270.9 \pm 247,845.7$	$366,901.1 \pm 307,701.3$	$175,862.6 \pm 126,061.3$	<0.001 ^a
Total radiation dose	$414,635.3 \pm 320,944.8$	$500,550.8 \pm 377,394.6$	$332,301.8 \pm 230,139.3$	0.001 ^a
Anesthesia type: General Spinal Local	135 (42.3%) 181 (56.7%) 3 (0.9%)	28 (38.9%) 44 (61.1%) 0	107 (43.3%) 137 (55.5%) 3 (1.2%)	0.48

EVAR & F/B-EVAR with no contrast

1. AKI post EVAR & F/B-EVAR

occurs up to 20% mL ICM impacts on patient 'survival

2. CO₂ automated angiography effective in EVAR & F/B-EVAR reduces postoperative and 1-year renal impairment may increase radiation exposure