Choosing the right FEVAR for the right patient

Jürgen Falkensammer

Disclosures

Speaker name: Jürgen Falkensammer
© I have the following potential conflicts of interest to report:
\square Receipt of grants/research support
$\boldsymbol{\Delta}$ Receipt of honoraria and travel support
\square Participation in a company-sponsored speaker bureau
\square Employment in industry
Shareholder in a healthcare company
Owner of a healthcare company
\square I do not have any potential conflict of interest

\$NMV

BARMHERZIGE BRÜDER

dnyw

f-Anaconda

$\rightarrow 22.3 \mathrm{~F}$ delivery system
\rightarrow max. length from top to flow divider: 100 mm
\rightarrow graft diameter: 21.5, 23.5, 25.5, 28, $30.5,32$ \& 34 (36) mm
\rightarrow max. 5 fenestrations

f-Anaconda

\rightarrow 22.3F delivery system
\rightarrow max. length from top to flow divider: 100mm
\rightarrow graft diameter: 21.5, 23.5, 25.5, 28, 30.5, 32 \& 34 (36) mm
\rightarrow max. 5 fenestrations
\rightarrow up to 60 mm of unsupported space for fenestration placement
\rightarrow max. angulation 90°
f-Treo

\rightarrow 19Fr delivery system
\rightarrow max. length from top to flow divider: 120mm
\rightarrow graft diameter: $24 \mathrm{~mm}, 26 \mathrm{~mm}$, $28 \mathrm{~mm}, 30 \mathrm{~mm}, 33 \mathrm{~mm}$ and 36 mm
\rightarrow up to 5 fenestrations

f-Treo

\rightarrow 19Fr delivery system
\rightarrow max. length from top to flow divider: 120mm
\rightarrow graft diameter: $24 \mathrm{~mm}, 26 \mathrm{~mm}$, $28 \mathrm{~mm}, 30 \mathrm{~mm}, 33 \mathrm{~mm}$ and 36 mm
\rightarrow up to 5 fenestrations
\rightarrow up to 40 mm of free space between springs for fenestration placement
\rightarrow max. angulation? 70° ?

Case

Arery	Angle ()	\varnothing Vessel $(m m)$	\varnothing Fenestration $(m m)$
Celiac	9	8	8
Superior Mesenteric	-15	8	8
Left Renal	75	6.5	7
Right Renal	-62	7.5	7

For joined bodies, the horizontal positions are based
on the proximal ring diameter on the scheme image. These will be modified for the distal body diameter on the graft. Joining ring above CA fenestration.

Proximal body size - CFD36
Distal body size - CFD30

fenestrated anaconda

PAT 4544-B1	Bifurcated Device 4 Fenestrations Mid-ring Removed Pleated Peak to Bifurcation: 100 mm Contralateral Flare Removed Legs Lateral	ISSUE	date	CHECKED BY	DESCRIPTION	Engineer
		1	14 FEB 2024	ASO14	1st Issue	SM015
Not to scale All dimensions in mm unless otherwise stated						

BARMHERZIGE BRÜDER

Custom Device Design Approval Record

CP\#: 05925
Document\#: Form - 0514 Rev: A

Case Identifier
PAT 4544-B1 Device Parameters
Device Type
Fenestrated TREO

Catalogue No. Patient ID 28BC36B13514S196 RM221250

Delivery System
Fenestrated TREO $19 \mathrm{Fr} / 60 \mathrm{~cm}$

Clinician Engineer
Dr. J Falkensammer Arwa Hussein

IFU Reference
LSPEC-2844-8507 Rev D

DEVICE MEASUREMENTS

$$
\begin{array}{|c|c|c|c|c|}
\hline \text { SPRING DESCRIPIION } & \text { PROXIMAL } & \text { PROXIMAL } & \text { MIDDLE } & \text { MIDDLE } \\
\hline \text { SPANSIITIION NUMBER } & 4-1 & 5 & 7 \\
\hline
\end{array}
$$

$$
\begin{array}{|c|c|c|c|c|c|}
\hline \text { SPRING NUMBER } & 4-1 & 4-2 & 5 & 6 & 7 \\
\hline \text { CONSTRAINED TO SIZE }[\pm 2 \mathrm{~mm}] & 24 & 24 & 22 & 18 & 18 \\
\hline
\end{array}
$$

Issue Issue Date
Jamie Clucas Issu 27 February 2024

Patient Parameters

| $\begin{array}{c}\text { Bottom of CA } \\ \text { to middle of } \\ \text { vessel }(\mathrm{mm})\end{array}$ | | | |
| :---: | :---: | :---: | :---: | \(\left.\left.\begin{array}{c}Vessel

Diameter (mm)\end{array}\right) $$
\begin{array}{c}\text { Fenestration } \\
\text { Diameter }(\mathrm{mm})\end{array}
$$\right]\)

Notes: Access Side - Right
Legs in lateral orientation
Lowest fenestration to bifurcation 20.5 mm Distal markers at distal edge of contralateral leg Maximum and minimum overlap markers on lateral edge of each distal docking zone

Comments

Main body length reduced to 110 mm
Fabric landing 28 mm above the CA.
Ipsilateral limb length increased to 50 mm .
Ipsilateral limb length increased to 50 mm .
Contralateral limb length increased to 25 mm . CA MAL compression

Selection criteria

\rightarrow suitability (narrow or kinked) access vessels

Selection criteria

\rightarrow suitability (narrow or kinked) access vessels
\rightarrow angulation of the aneurysm neck (supra-

Selection criteria

\rightarrow suitability (narrow or kinked) access vessels
\rightarrow angulation of the aneurysm neck (supra- and infrarenal)

Selection criteria

\rightarrow suitability (narrow or kinked) access vessels
\rightarrow angulation of the aneurysm neck (supra- and infrarenal)
\rightarrow suitability of proximal landing zone
\rightarrow distance between CT and distal RA

ONS

\qquad

BARMHERZIGE BRÜDER
KONVENTHOSPITAL LINZ

The Italian Multicentre Registry of Fenestrated Anaconda ${ }^{\text {TM }}$ Endografts for Complex Abdominal Aortic Aneurysms Repair

Rodolfo Pini ${ }^{\mathrm{a}, *}$, Jacopo Giordano ${ }^{\text {a }}$, Michelangelo Ferri ${ }^{\text {b }}$, Bruno Palmieri ${ }^{\text {c }}$, Marco Solcia ${ }^{\text {c }}$, Stefano Michelagnoli ${ }^{\text {d }}$, Emiliano Chisci ${ }^{\text {d }}$, Franco Fadda Gian ${ }^{e}$, Pierluigi Cappiello ${ }^{\dagger}$, Francesco Talarico ${ }^{\text {b }}$, Silvio Licata ${ }^{h}$, Paolo Frigatti ${ }^{i}$, Sonia Ronchey ${ }^{j}$, Nicola Mangialardi ${ }^{j}$, Carlo Pratesi ${ }^{\mathrm{k}}$, Mauro Salvini ${ }^{\prime}$, Domenico Milite ${ }^{m}$, Fabio Pilon ${ }^{m}$, Reinhold Perkmann ${ }^{n}$, Carlo Stringari ${ }^{n}$, Raffaele Pulli ${ }^{\circ}$, Gianluca Faggioli ${ }^{\text {a }}$, Mauro Gargiulo ${ }^{\text {a }}$

Objective: The aim was to describe the outcomes of the Anaconda ${ }^{\mathrm{TM}}$ Fenestrated endograft Italian complex aortic aneurysms (AAAs), unsuitable for standard endovascular aneurysm repair (EVAR). Methods: Between 2012 and 2018 patients with a proximal neck unsuitable for standard EVAR, treated fenestrated Anaconda ${ }^{\mathrm{TM}}$ endograft, were prospectively enrolled in a dedicated database. Endpoints we operative technical success (TS) and evaluation of type la/b or 3 endoleaks ($\mathrm{T} 1 / 3 \mathrm{EL}$), target visceral (TVV) occlusion, re-interventions, and AAA related mortality at 30 days, six months, and later follow up. Results: One hundred twenty seven patients (74 ± 7 years, American Society Anesthesiology (ASA) II/III/IV: 12/85/30) were included in the study in 49 Italian Vascular Surgery Units (83 juxta/para-renal AAA, 13 type IV thoraco-abdominal AAA, 16 T1aEL post EVAR, and 15 short neck AAA). Configurations with one, two, three, and four fenestrations were used in $5,56,39$, and 27 cases, respectively, for a total of 342 visceral vessels. One hundred and eight (85%) bifurcated and 19 (15\%) tube endografts were implanted. In 35% (44/127) of cases the endograft was repositioned during the procedure, and 37% (128/342) of TVV were cannulated from brachial access. TS was 87% (111/127): five T1EL, six T3EL (between fenestration and vessel stent), and six loss of visceral vessels (one patient with a Type la EL had also a TVV loss) occurred. Thirty day mortality was $4 \%(5 / 127)$. Two of the five T1EL resolved spontaneously at 30 days. The overall median follow up was 21 ± 16 months; one T1EL (5\%) occurred at six months and one T3EL (4\%) at the three year follow up. Another two (3\%) TVV occlusions occurred at six months and five (3\%) at three years. The re-intervention rate at the 30 days, six months, and three year follow up was $5 \%, 7 \%$, and $18 \pm 5 \%$, respectively. Conclusion: The fenestrated Anaconda ${ }^{\mathrm{TM}}$ endograft is effective in the treatment of complex AAA. Some structure properties, such as the re-positionability and the possibility of cannulation from above, are specific characteristics helpful for the treatment of some complex anatomies.

dNM

BARMHERZIGE BRÜDER

