THE 26TH INTERNATIONAL EXPERTS SYMPOSIUM CRITCAL ISSUES IN AORTIC ENDOGRAFTING

MARCH 21 & 22 2024

COPENHAGEN/MALMÖ SCANDIC TRIANGELN, MALMÖ www.critical-issues-congress.com

MARCH 21 & 22 2024

COPENHAGEN/MALMÖ SCANDIC TRIANGELN, MALMÖ

Impact of Thoracic Aortic Endografts on Native Anatomic Dynamics and Compliance

Christopher Cheng, PhD Adjunct Professor of Surgery, Stanford University President & CEO, Global Science & Technology President, Cardiovascular Implant Durability (CVID)

Disclosures – past 3 years

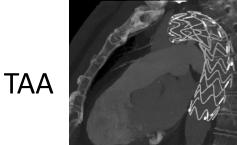
 Consultant for: W.L. Gore & Associates, Convext Medical, Medtronic, Terumo Aortic, Bentley Innomed, Faegre Drinker Biddle & Reath, Starlight Cardiovascular

ntervention 占 iomechanics & 🗞 ngineering Lab

 Research Funding from: W.L. Gore & Associates, Bentley Innomed, Starlight Cardiovascular

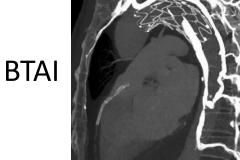
Introvert vs. Extrovert

https://commons.wikimedia.org/wiki/File:Man_looking_down_at_shoes_%28Unsplash%29.jpg



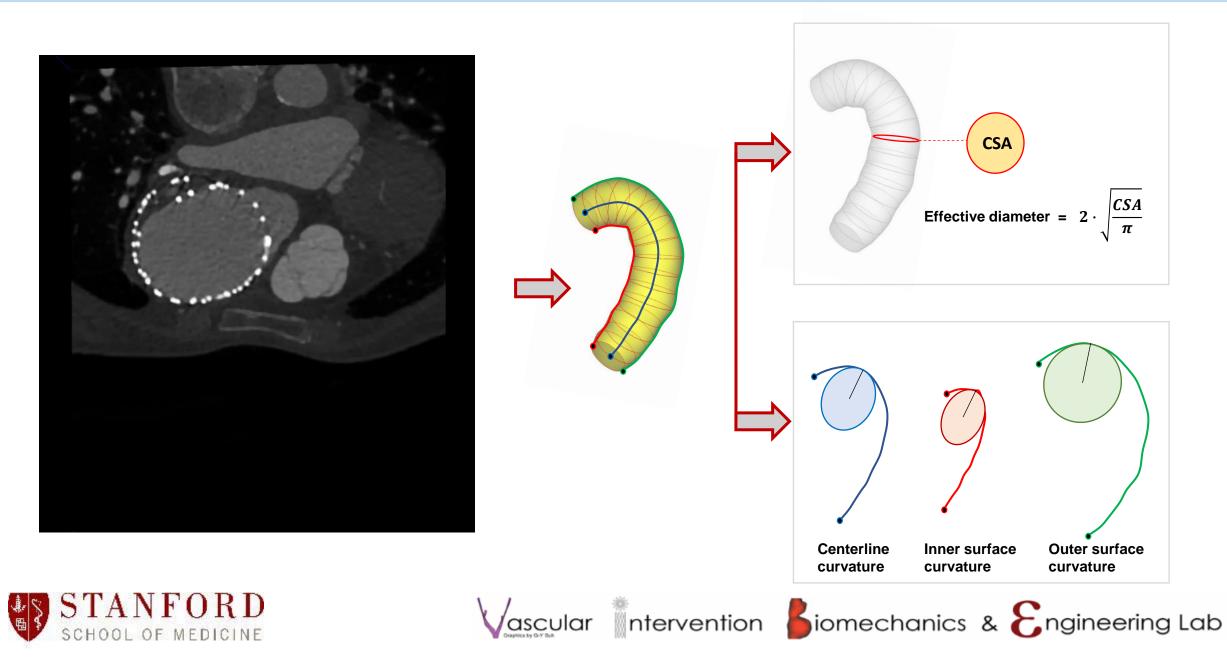
Patients, Devices, and Imaging

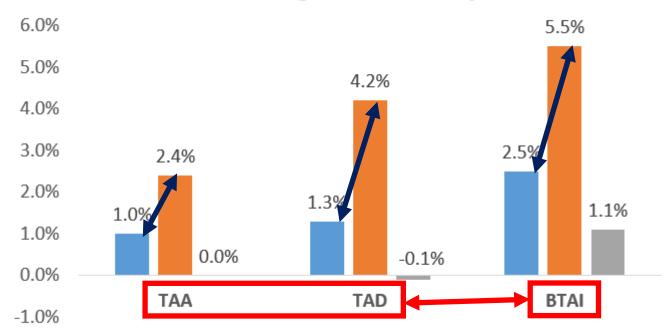
- Terumo Aortic RelayPro trials in US and Japan, recruited 2017-2022
 - Thoracoabdominal Aneurysms (TAA)
 - Thoracic Aortic Dissections (TAD)
 - Blunt Trauma Aortic Injury (BTAI)


# Sites	# Patients	Aortic Zones
36	110	2+3+4
22	56	2+3+4
16	50	1+2+3

Cardiac-gated CTA

Indication	# Patients	Age @ Implant	# Devices	CTA Timepoints
TAA	7	79±10y	4 single, 3 double	3 pre+post, 4 post
TAD	4	64±13y	2 single, 2 double	4 post
BTAI	3	51±14y	3 single	2 pre+post, 1 post





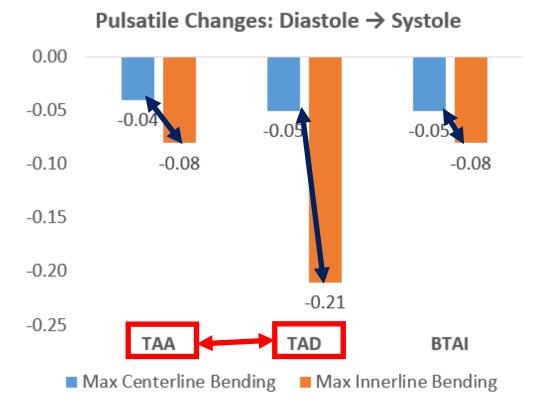
ntervention Siomechanics & Engineering Lab

3D Modeling and Quantification

Thoracic Endograft Deformations

Pulsatile Changes: Diastole \rightarrow Systole

Mean Diameter Change Max Diameter Change Arclength Change


Mean diametric expansion diastole \rightarrow systole: BTAI > TAA, TAD Max diametric expansion diastole \rightarrow systole: BTAI > TAD > TAA Arclength lengthening diastole \rightarrow systole, BTAI > TAA, TAD

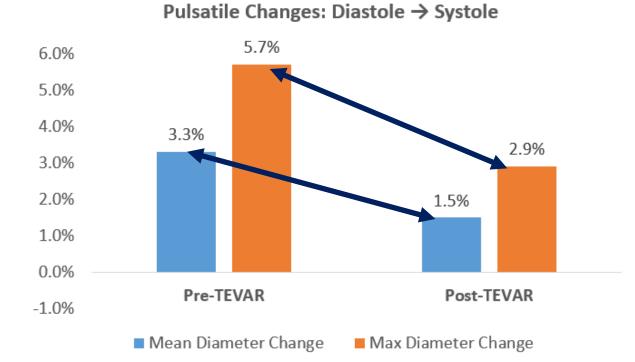
- Max D > Mean D by 2.5-3x
- Mean D: BTAI > TAA/TAD, ~2x Max D : BTAI > TAA/TAD, $\sim 2x$ Axial: BTAI > TAA/TAD, >10x BTAI vs. DTAA/TAD - 51±14 vs. 74±13y
- Similar 1.8% Mean D and near-zero Axial deformations for C-TAG [Suh EJRO 2021, Hirotsu AVS 2018]
- Higher 2.4% Axial def in Relay patient, but included entire descending thoracic (including native) [Nauta Aorta 2017]

ntervention Liomechanics & Engineering Lab

Thoracic Endograft Deformations

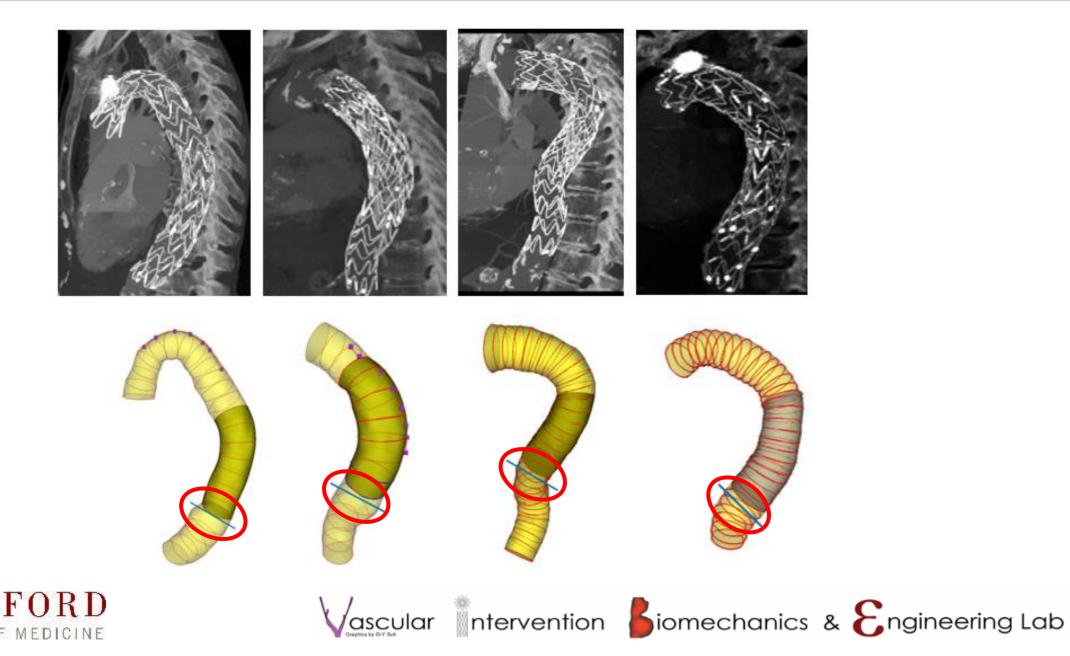
Max centerline bending not different TAA, TAD, BTAI

Max innerline straightening diastole \rightarrow systole: TAD > TAA, BTAI


- Pulsatile bending due to systolic straightening due to higher pressure
- Inner surface bending 2-4x of centerline, partially consequence of separate metallic rings
 - Greater for TAD vs. TAA cohorts (tissue stiffness)
 - Similar centerline and inner surface bending as Gore C-TAG [Ullery VES 2018]
- Important for understanding metallic stent durability and graft wear

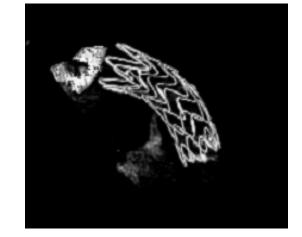
ntervention Liomechanics & Engineering Lab

Pulsatile Damping from TEVAR


Mean diametric expansion diastole → systole: 52±26% Pre-to-Post TEVAR damping

Max diametric expansion diastole → systole: 47±23% Pre-to-Post TEVAR damping

- Pulsatile diametric deformation: Mean = 3.3% to 1.5%, Max = 5.7% to 2.9%
- From pre-to-post TEVAR, pulsatile diametric deformation damped 52% for length-averaged and 47% for maximum localized
- Mean Circ strain: 2.0-4.2% (68±6y), 7.3-8.9% (41±7y) [Morrison JVS 2009]
- Comparable damping to Gore C-TAG of 45% (3.3% to 1.8%) [Suh EJRO 2021]


ntervention \mathbf{L} iomechanics & \mathbf{E} ngineering Lab

Bending Location for Overlapped Endografts

Conclusions

- Terumo Relay Pro exhibits similar pulsatile avg diam deformation, and pre-to-post TEVAR diam deformation damping as Gore C-TAG for TAA and TAD cohorts
- In younger, non-diseased BTAI cohort, endograft deformations were greater in diam (~2x) and axial (>10x) directions vs. TAA/TAD
- Cycling bending similar between Relay Pro and C-TAG, but 2-4x on the inner curve vs. centerline
- Bending concentrates at transition from single to overlapped endograft regions
- Localized deformations essential to predict durability

ntervention Liomechanics & Engineering Lab

MARCH 21 & 22 2024

COPENHAGEN/MALMÖ SCANDIC TRIANGELN, MALMÖ

Thank you

